

### Miami Thyroid Oncology Symposium March 18-19, 2022

# Thyroglobulin: Biology, Physiology and Clinical Meaning

#### Luca Giovanella MD PhD

Ente Ospedaliero Cantonale, Bellinzona & University Hospital Zürich, Zürich (Switzerland)





# **Learning Objectives**

After this session, participants will be given the tools to:

Thyroglobulin physiology and physiopathology

Pitfalls and caveats in clinical testing

Diagnostic and prognostic value of thyroglobulin





# **Learning Objectives**

After this session, participants will be given the tools to:

Thyroglobulin physiology and physiopathology

Pitfalls and caveats in clinical testing

Diagnostic and prognostic value of thyroglobulin





# Thyroglobulin



660kDa glycoprotein

- produced exclusively in the thyroid gland
- substrate for thyroid hormones production
  - small amounts detected in the serum of healthy individuals
    - (0.5-1 ug/L x g thyroid tissue)





# Thyroglobulin



#### **Increased serum Tg concentrations**

- disordered thyroid growth (benign and malignant nodules)
- increased thyroid activity (hyperthyroidism)
- glandular destruction (destructive thyroiditis)

#### Key points:

-measurement of Tg for evaluation of suspicious thyroid nodules is not recommended

-perform Tg measurement 4-6 weeks and 3 months after surgery and radioiodine, respectively





# Thyroglobulin



#### **Undetectable serum thyroglobulin levels**

expected after removal of benign and malignant thyroid tissues

Key point: serum Tg is the primary biochemical tumor marker used to monitor differentiated thyroid cancer

#### (DTC) after removal of thyroid tissues





# **Learning Objectives**

After this session, participants will be given the tools to:

Thyroglobulin physiology and physiopathology

Pitfalls and caveats in clinical testing

Diagnostic and prognostic value of thyroglobulin





# **Thyroglobulin testing**

Radioimmunoassays

Immunometric assays

Tandem Mass Spectrometry







|                                                                                   |                   |                               | erences                                                                |                                                 |  |  |
|-----------------------------------------------------------------------------------|-------------------|-------------------------------|------------------------------------------------------------------------|-------------------------------------------------|--|--|
| Assay                                                                             | Source            | Functional sensitivity (µg/L) | Anti-Tg<br>antibodies                                                  | Heterophile antibodies                          |  |  |
| RIA<br>IMAs                                                                       | LDT<br>Commercial | 0.5-5.0<br>0.1-0.9<br>0.5-1.0 | Yes (falsely low or falsely high results)<br>Yes (falsely low results) | No<br>Yes (falsely high or falsely low results) |  |  |
| LDT: laboratory-developed test. Algeciras-Schimnich A. Crit Rev Clini Lab Sci (20 |                   |                               |                                                                        |                                                 |  |  |





# Thyroglobulin testing: the pivotal role of analytical sensitivity







# Thyroglobulin testing: the pivotal role of analytical sensitivity



Robust data suggest that an undetectable Tg value using a highly sensitive assay is associated with adequate sensitivity and NPV to obviate the need for measuring TSH-stimulated Tg concentrations in most cases

Giovanella L et al. European Journal of Endocrinology (2019) 181, R133–R145





#### Key points:

- **1.Thyroglobulin should not be measured routinely by RIA and MS methods in patients with DTC**
- 2. Thyroglobulin should be measured by immunometric assays, preferentially highly-sensitive ones





| Manufacturer         | Tg Assay                                                                                                     | Procedure to assess the analytical sensitivity                                            |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| Abbott               | Architect Tg                                                                                                 | LoQ determined from $n \ge 60$ replicates of low-analyte level samples and defined as the |  |  |
|                      | Alinity i Tg                                                                                                 | lowest concentration at which a maximum allowable precision of 20 % CV is met.            |  |  |
| Beckman Coulter      | Access Tg                                                                                                    | AS determined as the lowest detectable level of Tg distinguishable from zero with 95%     |  |  |
|                      |                                                                                                              | confidence (LoD).                                                                         |  |  |
| BRAHMS Thermofisher  | BRAHMS h-Tg Sensitive                                                                                        | FS determined as inter-assay precision of 20% according to the CLSI EP5-A3 guidelines.    |  |  |
|                      | KRYPTOR                                                                                                      | LoQ determined as the lowest concentration with 40% total allowable error according to    |  |  |
|                      |                                                                                                              | the CLSI EP5-A3 guidelines.                                                               |  |  |
| Diasorin             | Liaison <sup>®</sup> Tg II Gen                                                                               | FS defined as the lowest measureable analyte concentration with an inter-assay CV < 20%.  |  |  |
| Roche Diagnostics AG | che Diagnostics AG Elecsys Tg II LoQ determined as the lowest concentration with 30% total allowable error a |                                                                                           |  |  |
| 4                    | ſ                                                                                                            | the CLSI EP17-A2 guidelines.                                                              |  |  |
| Siemens Healthineers | Atellica <sup>®</sup> IM                                                                                     | LoQ defined as the lowest meaasurable concentration with intra-laboratory LoQ $\leq$ 20%. |  |  |
| Siemens Healthineers | Immulite 2000 Tg                                                                                             | FS procedure unreported                                                                   |  |  |





#### □ Molecular etherogeneity



Different antibodies in different assays







**Certified Reference Material (BCR® 457)** 

❑ Using different assays may disrupt serial monitoring
⇒ Use the same assay during the patient's follow-up.
⇒ If change unavoidable rebaseline is needed.



Time, weeks





#### Thyroglobulin autoantibodies (TgAb)



#### Falsely reduced Tg levels

TgAb prevalence: 15-30%

TgAb assays: limited agreement

 $\Rightarrow$  New TgAb assay: rebaseline!

TgAb assays: different tresholds $\Rightarrow$  Adopt method-specific LOQ/FS

ExampleDTC patient: TgAb 88 IU/mLCutoff115 IU/mLLOQ 40 IU/mL

 $\Rightarrow$  TgAb-positive









Netzel BC et al. JCEM 2015







#### **Detection of HAb interferences**

- test repetition with an alternative assay
- recovery test (i.e. over-recovery)
- measurement of serial dilutions of suspected samples
- precipitation polyethylene glycol.
- serum treatment with HAb-blocking reagents (i.e. HBT)

#### Falsely increased Tg levels







#### Very rare in modern Tg IMAs

-advanced metastatic disease

-Tg measurement on FNAC washouts

#### Detection

-Tg increases in serially diluted samples









#### Strategies

- test repetition after biotin discontinuation (>48 hours)
- test repetition with a non-(streptavidin/biotin)-based IMA
- use new biotin-protected immunoassay

Prevalence: no cases reported so far





# **Learning Objectives**

After this session, participants will be given the tools to:

Thyroglobulin physiology and physiopathology

Pitfalls and caveats in clinical testing

Diagnostic and prognostic value of thyroglobulin





# **Current clinical settings**

**Total thyroid ablation (TTx + I-131):** removal of benign and malignant thyroid tissues

Total thyroidectomy w/o I-131: post-op circulating Tg produced by thyroid remnants

#### **Lobectomy:** post-op circulating Tg produced by contralateral lobe





# **Total thyroid ablation**

Table 5. Response assessment after total thyroid ablation [2].

| Response                               | Criteria                                                            | Imaging                   | Thyroglobulin (ng/mL)                                                       |
|----------------------------------------|---------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------|
| Excellent                              | No evidence of disease (clinical, biochemical, or structural)       | Negative                  | Basal Tg < 0.2 ng/mL OR<br>stimulated-Tg < 1.0 ng/mL                        |
| Incomplete biochemical                 | Abnormal Tg OR increasing TgAb<br>No evidence of structural disease | Negative                  | Basal Tg > 1.0 ng/mL OR<br>stimulated-Tg > 10 ng/mL OR<br>Rising TgAb       |
| Incomplete structural<br>Indeterminate | Evidence of structural disease<br>Aspecific findings                | Positive<br>Indeterminate | Any Tg and TgAb value<br>Basal Tg 0.2–1.0 ng/mL<br>Stimulated-Tg 1–10 ng/mL |





# **Total thyroid ablation**



Universität Zürich<sup>™™</sup>



|                                         | Hazard Ratio    | 95% CI       | Р     |  |  |  |
|-----------------------------------------|-----------------|--------------|-------|--|--|--|
| Univariate analysis                     |                 |              |       |  |  |  |
| Age >55                                 | 3.54            | 1.3-9.65     | .013  |  |  |  |
| High risk according<br>to ATA           | 3.24            | 1.23-8.49    | .017  |  |  |  |
| TNM stage IV                            | 4.45            | 1.79-11.03   | .001  |  |  |  |
| Basal Tg (Elecsys®)                     | 102.19          | 13.48-774.39 | <.001 |  |  |  |
| Basal Tg (Access®)                      | 108.27          | 14.36-816.29 | <.001 |  |  |  |
| Stimulated Tg (Elecsys®<br>and Access®) | 94.07           | 12.44-711.5  | <.001 |  |  |  |
| Multivariate analysis (wit              | th Tg Elecsys®) |              |       |  |  |  |
| Age >55                                 | 2.43            | 0.88-6.71    | .087  |  |  |  |
| High risk according<br>to ATA           | 1.33            | 0.5-3.56     | .566  |  |  |  |
| TNM stage IV                            | 2.03            | 0.77-5.35    | .153  |  |  |  |
| Basal Tg                                | 67.94           | 8.68-531.87  | <.001 |  |  |  |
| Multivariate analysis (with Tg Access®) |                 |              |       |  |  |  |
| Age >55                                 | 1.29            | 0.42-3.93    | .655  |  |  |  |
| High risk according to ATA              | 2.53            | 0.83-7.72    | .103  |  |  |  |
| TNM stage IV                            | 1.58            | 0.58-4.28    | 368   |  |  |  |
| Basal Tg                                | 81.61           | 10.26-648    | <.001 |  |  |  |



# **Total thyroid ablation**

#### Thyroidectomy

#### I-131 therapy

(no extra-thyroid uptake on post-treatment whole body scan)

onT4-hsTg / Neck US

**Positive US** 

Any Tg value

**Incomplete structural response** 

*Work-up, ev treatment* 

6-12 months

- onT4-hsTg <0.2 ug/L
- **Negative US**

**Excellent response** every 12-24 months

- **Clinical examination**
- onT4-hsTg

#### **TgAb-negative**

# onT4-hsTg ≥ 0.2 ug/L

**Negative US** 

#### onT4-hsTg 0.2-1 ug/L

Monitor Tg trend 

#### onT4-hsTg > 1 ug/L

Work-up, ev treatment





Protected with free version of Watermarkly. Full version doesn't put this mark.



Remnant

TSH

V

Tg

Tg will become a significantly less-useful marker in this scenario, and more sophisticated Tg reference intervals, mathematically normalized to TSH level and residual thyroid tissue tailored to individual patients, will have to be established. *Grebe SKG. Expert Rev Endocrinol Metab 2010* 





#### Retrospective (selection bias)

Tumor size (mm) RAI- 4 (0.5–25) vs RAI+ 12 (0.5–40) p<0.0001



> In most patients, serum Tg values spontaneously drop to undetectable levels within 5-7 yr after thyroidectomy.

> Thus, in later phases, Tg may be a valuable tool for follow-up.

Durante C et al. J Clin Endocrinol Metab 2012







Spencer 2014





# Confounders

- the time elapsed since total thyroidectomy
- the amount of thyroid remnant
- the individual's risk of having metastasis
- the Tg cutoff used for analysis
- the TSH level at the time of Tg measurement.

















| obectomy | Study                                       | Incre<br>Recurrence                     | asing Tg<br>No Recurrence | Decreasin<br>Recurrence | ng or Stable Tg<br>No Recurrence |       |      | Risk rat<br>with 95% | io<br>Cl | Weight<br>(%) |
|----------|---------------------------------------------|-----------------------------------------|---------------------------|-------------------------|----------------------------------|-------|------|----------------------|----------|---------------|
|          | low                                         |                                         |                           |                         |                                  |       |      |                      |          |               |
|          | Vaisman, 2013                               | 4                                       | 14                        | 1                       | 51                               |       |      | 1.56 [ 1.38,         | 96.73]   | 13.08         |
|          | Park, 2018                                  | 14                                      | 174                       | 5                       | 15                               |       |      | 0.30 [ 0.12,         | 0.74]    | 17.16         |
|          | Ritter, 2020                                | 3                                       | 25                        | 9                       | 130                              | -     |      | 1.65 [ 0.48,         | 5.73]    | 16.18         |
|          | Heterogeneity: τ <sup>2</sup> = 2.24,       | l² = 83.15%, H                          | ² = 5.93                  |                         |                                  |       |      | 1.47 [ 0.22,         | 9.68]    |               |
|          | Test of $\theta_i = \theta_j$ : Q(2) = 11.8 | 87, p = 0.00                            |                           |                         |                                  |       |      |                      |          |               |
|          | low-intermediate                            |                                         |                           |                         |                                  |       |      |                      |          |               |
|          | Cho, 2018                                   | 9                                       | 0                         | 10                      | 600                              |       |      | 5.28 [ 29.85,        | 102.38]  | 17.84         |
|          | Colombo, 2021                               | 4                                       | 0                         | 7                       | 41                               |       |      | 5.88 [ 2.86,         | 12.09]   | 17.63         |
|          | Heterogeneity: $\tau^2 = 2.39$ ,            | l² = 95.34%, H                          | 2 = 21.46                 |                         |                                  |       |      | 8.18 [ 2.02,         | 163.37]  |               |
|          | Test of $\theta_i = \theta_j$ : Q(1) = 21.4 | 46, p = 0.00                            |                           |                         |                                  |       |      |                      |          |               |
|          | low-intermediate-high                       |                                         |                           |                         |                                  |       |      |                      |          |               |
|          | Xu, 2021                                    | 24                                      | 78                        | 42                      | 906                              |       | -    | 5.31 [ 3.36,         | 8.40]    | 18.11         |
|          | Heterogeneity: $\tau^2 = 0.00$ ,            | I <sup>2</sup> = .%, H <sup>2</sup> = . |                           |                         |                                  |       | +    | 5.31 [ 3.36,         | 8.40]    |               |
|          | Test of $\theta_i = \theta_j$ : Q(0) = 0.00 | 0, p = .                                |                           |                         |                                  |       |      |                      |          |               |
|          | Overall                                     |                                         |                           |                         |                                  |       |      | 4.59 [ 1.11,         | 19.05]   |               |
|          | Heterogeneity: τ <sup>2</sup> = 2.86,       | l² = 94.80%, H                          | ² = 19.22                 |                         |                                  |       |      |                      |          |               |
|          | Test of $\theta_i = \theta_j$ : Q(5) = 96.0 | 09, p = 0.00                            |                           |                         |                                  |       |      |                      |          |               |
|          | Test of aroup differences:                  | Q(2) = 2.98                             | 0 = 0.22                  |                         |                                  |       |      |                      |          |               |
|          |                                             |                                         |                           |                         |                                  | 1/8 1 | 8 64 |                      |          |               |
|          |                                             |                                         |                           |                         |                                  |       |      |                      |          |               |





## **TgAb-positive patients**

**TgAb** can be used as an imprecise surrogate marker of residual benign/malignant thyroid tissue.

**TgAb** levels do not correlate with the tumor load: the trend is more important than the absolute level.









# Conclusions

- ✓ hsTg assays obviate the need for TSH-stimulated Tg testing in most DTC patients.
- Serum Tg measurement may be employed in patients treated with thyroidectomy without radioiodine, as decreasing Tg levels are reassuring. Accurate data are required, however, to better define the diagnostic performance, interpretation criteria, and pitfalls of both in these patients.
- ✓ The role of serum Tg (and TgAb) measurement is limited if any in patients treated with lobectomy alone.
- ✓ In TgAb-negative patients, the non-stimulated hsTg trend provides highly relevant prognostic information.
- ✓ In TgAb-positive patients, interferences preclude reliable Tg measurements. The kinetics of TgAb levels (measured with the same method over time) serves as a useful (surrogate) tumor marker.
- ✓ Future improvements in mass spectrometry Tg assays may solve the problem of TgAb interferences but currently Tg-MS should not be used in clinical practice due to suboptimal sensitiviy..





#### DTC follow-up and serum Tg measurement





