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ABSTRACT: Nanomedicines have played an important role in the management of cancer patients with PEGylated 
liposomal doxorubicin (e.g., Doxil) and nab-paclitaxel (Abraxane) being two examples that have been commercially 
successful. However, the number of patients benefitting from these therapies is small compared with the potential 
impact. While off-site toxicities have been reduced, long term survival has not been realized. Thus, there continues to 
be a need for improved therapies and nanomedicine (delivery of drugs using nanoparticle carriers) that provide advan-
tages over the delivery of free drug. Mesoporous silica nanoparticles (MSNs) are a unique class of nanomedicine that 
offers high loading capacity, the ability of targeting specificity, potential for stimulated drug release and are considered 
generally safe and non-toxic. This paper provides a comprehensive analysis of 166 published studies in which MSNs 
were evaluated in vivo and tumor response was reported. Eleven studies with liposomal doxorubicin and 3 studies with 
Abraxane are also included in the analysis. The MSN formulations exhibit a wide range of size, charge, drug loading 
and drug release. The tumor inhibition ratio (TIR) of some MSN formulations compared favorably to the FDA approved 
nanomedicines. However, TIR reached at least 99% in only 14 MSN formulations reported. On average, targeted MSNs 
and MSNs with combined therapy (multiple drugs, or drugs combined with thermal therapy) performed best. Survival 
was reported in 14 MSN studies. The reported increased life survival (ILS) tended to be longer for liposomal doxoru-
bicin and Abraxane than for the MSN formulations. The paper also provides an overview of MSN synthesis strategies 
and compares the development timeline of MSNs to that of Doxil and Abraxane, discussing the barriers to commercial-
ization. Finally, the paper provides recommendations to advance the development and commercialization of MSNs for 
cancer therapy.
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I. INTRODUCTION

A. Mesoporous Silica Nanoparticles

Since the first report of a unique characteristic of 
solid tumor microenvironment (i.e., increased cap-
illary permeability and lack of lymphatics), later 
termed the enhanced permeability and retention 
(EPR) effect,1–4 drug-polymer, drug-protein, and 
drug-nanoparticle complexes have been investigated 
as possible “silver bullets” for cancer therapy. Sev-
eral reviews of FDA approved nanomedicines have 
been published recently.5–8 The growth in nanomed-
icine funding has also been described.9 Excellent re-
views have been published outlining the advantages 
and disadvantages of the different nanoparticle 
materials and formulations for drug delivery appli-
cations; including liposomes,10–13 albumin-bound 
drugs in nanoparticle form,14,15 organic (polymer)16,17 

and inorganic materials (silica, gold, silver, iron ox-
ide),18–25 dendrimers,26,27 and micelles,28,29 as well 
as polymer-drug and antibody drug conjugates.30–32 
This paper will examine the current state of the 
development of mesoporous silica nanoparticles 
(MSNs) for drug delivery in cancer and compare 
and contrast the pre-clinical in vivo tumor growth 
inhibition of drug loaded MSNs to FDA approved 
Doxil (generic: Lipodox or liposomal doxorubicin) 
and Abraxane for delivery of doxorubicin (DOX) 
and paclitaxel respectively. The paper will also in-
vestigate the inconsistencies in experimental de-
sign and reporting of data, which may contribute to 
the lack of progress in moving new Nanomedicine 
based drug delivery formulations to commercializa-
tion. Finally, the paper will provide recommenda-
tions for standardizing pre-clinical Nanomedicine 
drug delivery experimental design and reporting of 
results.
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The preparation of mesoporous silica-gel struc-
tures was introduced around 1980.33 The first ap-
pearance of porous silica nanoparticles for cancer 
drug delivery applications was in 200034 (Table 
1). In 2003 Lin introduced the acronym MSNs for 
mesoporous silica nanosphere.35 A recent com-
prehensive review of the development of ordered 
mesoporous materials provides a nice history,36 
but leaves out the beginning of the story. In 1968 
a method for forming small spherical non-porous 
SiO2 particles of uniform and controllable size was 
reported and is now commonly referred to as the 
Stöber method (or Stöber reaction),37 and has been 
cited over 10,500 times. The synthesis is a sol-gel 
process with a silicate precursor (typically tetra-
ethylorthosilicate-TEOS, soluble in alcohol and or-
ganic solvents) which undergoes hydrolysis in H2O 
in an alcoholic solution and then in the presence of 
an acid or base catalyst (HCl, HNO3, ammonium, 
NaF, or NaOH) undergoes condensation. In 1992 a 
new family of molecular sieves was introduced38,39 
(which together has been cited almost 25,000 times) 
using a quaternary ammonium surfactant and te-
tramethylammonium silicate organosilicate. The 
ordered mesoporous silicas (M41S family, of which 
MCM41 or MCM-41 is an example) self-assemble 
into hexagonal arrayed pore of sizes from 15 Å to 
100 Å and surface area of 700 m2/g. The structure 
and pore dimensions highly depend on the surfac-
tant template structure (such as chain length) (see 
Table 2 for a list of different MSN types). In 1999 

the organosilane 1,2-bis(trimethoxysilyl)ethane 
(BTME, an organosilane monomer containing two 
trialkoxysilyl groups) with the surfactant octadec-
yltrimethylammonium chloride was used to create 
highly ordered organic-inorganic mesoporous mate-
rials with pore diameters of ~ 30 Å and surface areas 
of 750–1170 m2/g.40

Excellent reviews have been published detailing 
the synthesis and structure relationships of meso-
porous silica materials for general applications,41 and 
biomedical applications (theranostics, imaging, drug 
monitoring and sensing),25,42 including post-synthe-
sis funciontalization.43 Mesoporous (between micro 
and macro porous) materials are those with pore 
sizes from about 20 to 500 Å (2–50 nm). Material 
characteristics typically reported include overall 
size and shape, pore shape, pore arrangement, pore 
size, pore volume, Brunauer–Emmett–Teller (BET) 
surface area, wall thickness, lattice constant (the 
physical dimension of unit cell in a crystal lattice) 
and d spacing (distance between planes of atoms). 
Synthesis conditions controlling the crystal struc-
ture include temperature, solvent, the structure and 
chain length of the surfactant or structure directing 
agent template (which may be anionic, cationic or 
neutral, most typically a quaternary ammonium sur-
factant), the catalyst (which may be basic or acidic), 
the silica source (TEOS, TMOS, tetramethylammo-
nium silicate), possibly with a bock copolymer (e.g., 
PEO-PPO-PEO), and the synthesis conditions (pH, 
temperature, time). IUPAC (International Union of 

TABLE 1: Results from a Web of Science™ search (conducted December 23, 2020) for nanoparticle drug  
formulation development 

Key words Articles Reviews Proceedings Book 
chapters

First year 
in database

First drug 
approveda

Liposome* AND *Cancer* 31,088 6306 4825 915 1974† 1995b

Albumin-Bound AND 
*Cancer*

1972 467 176 48 1985 2005c

Silica* AND *particle* AND 
*Cancer*

9799 1733 533 270 2002 N/A

Silica* AND *particle* AND 
*porous AND *Cancer*

7677 1205 190 152 2000 N/A

aFor Cancer therapy; bDoxil®; cAbraxane®; N/A, not applicable. †Bangham225 cites the first description of liposomes in 1964. *Search 
variant wildcard.
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Pure and Applied Chemistry) nomenclature of the 
structural and compositional characteristics of po-
rous materials was published in 199444 and for or-
dered mesoporous structures in 2001.45 The tables 
for the classification of crystal families and systems 
can be found here46 and a tutorial on how to inter-
pret the tables here.47 Ohsuna et al.48 developed a 
software package to simulate mesoporous crystal 
structure based on TEM images for structure type 
identification. 

Most template methods (often referred to as 
“modified Stöber”) that have been proposed for drug 
delivery applications employ the surfactant cetyltrime-
thylammonium bromide (CTAB) or chloride (CTAC) 
as the template, typically mixed in H2O or H2O:alco-
hol, to create a microemulsion for better control of the 
hydrolysis step before the condensation step is initi-
ated by the base.49–51 The surfactant is then removed 
by either burning it off (referred to as calcination) or 
by solvent extraction with an acid:alcohol solution, 

TABLE 2: MSN types
Material 
(phase)

Template/
surfactant

Catalyst +Block 
co-polymer

Lattice 
structure

Pore size Ref.

MCM-41 Cation Base N Hexagonal 15 to > 100 Å 38,226,227
MCM-48 Cation Base N Cubic 30–100 Å 226,228
MCM-50 Cation Base N Lamellar Not Reported 227,229
SBA-1 Cation Acid N Cubic 24 Å 227
SBA-2 Cation Acid/Base N Hexagonal 30 Å 227
SBA-3 Cation Acid N Hexagonal 40 Å 227
SBA-6 Gemini Base N Cubic 75 Å 230
SBA-8 Bolaform Base N “ribbon like” 29 Å 231,232
SBA-11 Nonionic Acid Y Cubic 25 Å 233
SBA-12 Nonionic Acid Y Hexagonal 31 Å 233,234
SBA-15 Nonionic Acid Y Hexagonal 50 Å 233,235
SBA-16 Nonionic Acid Y “cage” 54 Å 233
FDU-1 Nonionic pluronic Acid Y “caged” cubic 120 Å 236
FDU-2 Multicharge 

cationic
Basic N Cubic 30 Å 237

FDU-5 Nonionic Acidic Y Cubic 45–95 Å 238
FDU-11 Bolaform Basic N Tetragonal 27 Å 239
FDU-12 Nonionic pluronic Acid Y Cubic 200 Å 240,241
FDU-13 Bolaform Basic N Tetragonal 18 Å 239
MCF nonionic Acidic Y Not reported “ultra large” 242
FSM-16 Cationic Basic N Hexagonal 15–40 Å 243
MSU Nonionic Slightly basic N Hexagonal 20–60 Å 244

Common acid (e.g., HCl, HBr) or base (e.g., NaOH, tetramethylammonium hydroxide). Note the conditions listed are as described 
in the publication cited. In some cases, the material has been reported to be formed in other conditions. Pore size distributions are 
generally narrow. The range of pore size listed in the table is due to different templates/surfactants used, or more specifically, with 
templates/surfactants with different chain lengths.
The search is from 1965-present. Note that keywords are only searched in the Title, Abstract and Keywords (Author Keywords and 
Keywords Plus®) of an article’s record and so some articles will be missed if the words appear elsewhere in the article.
MCM: Mobil Composition Matter (or Mobil Crystalline Matter); SBA: UC Santa Barbara Amorphous; FDU: Fudan University; 
MCF: Mesostructured Cellular Form; FSM: Folded Sheet Mesoporous; MSU: Michigan State University
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most typically under reflux conditions. Controlling 
the two synthesis steps by adjusting the ratio of the 
reactants, time and rate of adding the reactants and the 
reaction temperature and time, allows for controlling 
size, shape and the number and size of the pores. MSN 
syntheses processes reported also include a reverse (or 
inverse) micro-emulsion (water in oil) method52–54 and 
an oil in water emulsion method using vinyltriethox-
ysilane-VTES (or TVES) as the organosilica (which 
is slightly soluble in H2O) with Aerosol-OT (AOT) 
and butanol as surfactant and co-surfactant, respec-
tively.55–58 Collectively, these methods are also re-
ferred to as ORMOSILs (organically modified silica). 
Another modification is to functionalize the surface 
of the pores with reactive amine, thiol or carboxyl 
groups for conjugating drugs, imaging agents, target-
ing moieties, polymers, etc. The first use of the term 
ORMOSIL seems to be in 1986,59 though the applica-
tion was for solid-state conductors. In fact, porous sil-
ica nano and microparticles, due to their ordered pair 
structure, high pore surface area, and good control of 
over physical properties, such as size and shape, have 
many applications, including as catalysts, in chroma-
tography, CO2 sequestration, filters, water filtration, 
optoelectronic devices, biomedical applications such 
as sensors and drug delivery, and many others. There-
fore, the large-scale manufacturing of these materials 
is well developed and the physical and chemical char-
acteristics are well understood.

Table 3 lists the primary chemicals used to syn-
thesize MSNs. The most common surfactant used 
for MSN synthesis is CTAB. CTAC, the chloride 
salt form of CTAB, is used less often.60,61 Differ-
ences between the characteristics of CTAB and 
CTAC were investigated and described by Atkin 
et al.62 Triton X-100 is a non-ionic surfactant used 
in a water-in-oil emulsion modified Stöber tech-
nique, the oil phase is typically n-hexane and/or 
n-hexanol.63–65 Sodium bis(ethyl-hexyl) sulfosuc-
cinate (Aerosol-OT, AOT) is an anionic surfactant 
that has been used in oil-in-water emulsion mod-
ified Stöber methods, often with a co-surfactant 
such as 1-butanol.56,58,66–68 A co-surfactant may be a 
second surfactant or an alcohol and is often added 
to ionic surfactants to help reduce surface tension 
and rigidity in the surfactant film around the emul-
sion droplet. Tween-80 (Polysorbate 80) is another 

non-ionic surfactant used to create micelles for a 
modified Stöber MSN synthesis technique, but it is 
not commonly used.69,70 The microemulsion formed 
during MSN synthesis is highly dependent on the 
characteristics of the surfactant (and co-surfactants), 
such as chain length and charge, and the presence of 
electrolytes, which influences the properties of the 
silica-aqueous solution. The constituent conditions 
control the curvature of the water-surfactant (or wa-
ter-oil-surfactant) interface and influences the col-
loid size and shape, which in turn controls the rate 
of condensation of the organosilica compound and 
ultimately the growth of the nanoparticle. 

To date, there have been no clinical trials using 
MSNs for drug delivery (https://www.clinicaltrials.
gov), possibly for safety concerns, but also perhaps 
because they have performed no better than the al-
ready FDA approved nanomedicines in pre-clinical 
studies. Though there is persistent concern about 
the potential adverse health effects of nanoparticle 
materials,23 in general, ORMOSIL nanoparticles are 
considered biocompatible and nontoxic.71–74 For both 
liposomes and albumin-bound drug carriers for can-
cer, the first article appeared about 20 years before 
the first FDA approved drug. The motivation for de-
livering drugs by a nanocarrier or polymer conjugate 
is primarily to (1) improve the solubility of poorly 
water-soluble drugs, (2) increase plasma residence 
time (“stealth”) to improve pharmacokinetics (PK), 
(3) to reduce kidney excretion, (4) add a targeting 
and/or (5) imaging functionality without affecting the 
pharmacodynamics (PD) of the drug. Drugs that are 
generally effective but have undesirable toxicities can 
be re-purposed to improve PK-PD and thus poten-
tially improve patient outcomes. Table 4 lists primary 
drugs that have been delivered by MSNs and evalu-
ated in tumor-bearing mice in the studies reviewed in 
this paper. The choice of delivery vehicle is driven by 
the physical and chemical characteristics of the drug 
(molecular weight, charge, solubility, pKa, LogP 
etc.). The pKa is the negative base-10 logarithm of 
the acid dissociation constant (Ka) and relates drug 
solubility to the pH of the solvent/ststem. P (also re-
ferred to as Ko/w) is the octanol/water partition coef-
ficient and a measure of lipophilicity, a higher logP 
being more compatible with a lipophilic solvents and 
carrier. These characteristics influence drug loading, 
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TABLE 3: List of chemicals commonly used in the synthesis of MSNs for drug delivery applications
Chemical name Abbreviation Purpose/Use Structure/Formula

Cetyltrimethylammonium bromide CTAB Cationic surfactant

Cetyltrimethylammonium chloride CTAC Cationic surfactant

Triton X-100 Non-ionic surfactant used in 
a water-in-oil emulsion

Tween-80 (Polysorbate 80) Non-ionic surfactant that is 
used to create micelles

Dioctyl sulfosuccinate sodium salt Aerosol-OT, AOT Anionic surfactant used in 
oil-in-water emulsion

Igepal Co-520 Nonionic surfactant

Pluronic 127 Co-surfactant

1-Butanol Co-surfactant

n-hexanol Co-surfactant

n-hexane Co-surfactant

Aminopropyl)triethoxysilane APTES For amine functionalization

(3-mercaptopropyl)
trimethoxysilane

MPTMS For thiol functionalization

5-(Triethoxysilyl)pentanoic acid For carboxyl 
functionalization

3-(trihydroxysilyl) propyl 
methylphosphonate

Silica source

3-(Trimethoxysilyl)propyl 
methacrylate

TMP; MPS Silica source

1,2-bis(triethoxysilyl)-ethane BTEE Silica source

Triethylamine TEA Base catalyst

Ammonium solution Base catalyst NH3

Triethanolamine TEOA Base catalyst

Sodium hydroxide Base catalyst NaOH
Ammonium hydroxide Base catalyst NH4NO3

Tetraethyl orthosilicate TEOS Silica source
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release and compatibility with the solvents and other 
chemicals used in the synthesis of the nanocarrier.

B. Commercialization

Anthacyclines are the most widely prescribed anti-
cancer agents due to their broad spectrum efficacy to-
wards cancer, but high, dose-limiting cardioctoxicity 

and immune suppression was largely the driving 
force to develop drug carrier systems. Doxorubicin 
(DOX) is the most widely used anthracycline. The 
20 year path to FDA approval of Doxil (PEGylated 
liposomal DOX approved in 1995), which was the 
first approved nanoparticle-based drug larger than 
a polymer-drug or antibody-drug conjugate, has 
been very well described.75 By 1995 (the year of 

TABLE 3: (continued)
Chemical name Abbreviation Purpose/Use Structure/Formula

Triethoxyvinylsilane TEVS or VTES Silica source

3-isocyanato propyl trimethoxy 
silane

Silica source

Trimethylsilyl chloride Cl-TMS Silica source

Trihydroxy-silylpropylmethyl-
phosphonate

Silica source

(3-triethoxysilylpropylsuccinic 
Anhydride)

TPS Silica source

N-(2-aminoethyl)-3-
aminopropyltrimethoxysilane

AEAPS Silica source

bis(trimethoxysilyl)ethane BTSE; BTME Silica source

Octadecyltrimethoxysilane C18TMS Silica source

Polyethylamine PEI Cationic polymer

Polydopamine PDA Polymer from oxidation of 
dopamine

unknown

Ammonium nitrate Removes surfactant from 
msns

NH4NO3

Sodium carbonate To etch SiO2 for hollow 
msns

Na2CO3

Dimethyl sulfoxide DMSO Solvent and oil phase for 
emulsion

Cyclohexane oil phase for emulsion C6H12

Decahydronaphthalene decalin oil phase for emulsion C10H18

Triethylammmonium sucrose 
octasulfate

TEA8SOS remote loading trapping 
agent

  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

CRB-35804.indd                       332                                                               Manila Typesetting Company                                                               02/02/2021                      04:59PM

Critical ReviewsTM in Biomedical Engineering



Volum
e 48, Issue 6, 2020

C
hem

otherapy D
elivered by M

SN
s to Tum

or-B
earing M

ice�
333

TABLE 4: List of the most common drugs (and their characteristics) employed in the studies analyzed in this paper
Drug Abbreviation Mechanism of 

action
Structure MW pKa LogP H2O solubility

All-trans 
retinoic acid

ATRA N/A 300.4 N/A 6.9 Nearly 
insoluble

Arsenic trioxide ATO Induces apoptosis As2O3 197.8 N/A N/A Slightly
Berberine Ber Alkylation agent 336.4 N/A 3.6 Slightly

Camptothecin CPT Topoisomerase 
inhibitor

348.4 N/A 1 Low

Chlorin Ce6 PDT 
photosensitizer

312.4 N/A 3.7 DMSO, not 
H2O

Cisplatin 
(platinum agent)

cisPt/CDDP Alkylation agent 300 N/A N/A Soluble

Curcumin Cur Adjuvant 368.4 8.5 3.29 Isoluble

Docetaxel Doc Microtubular 
inhibitor

807.9 N/A 1.6 Insoluble

Doxorubicin DOX Topoisomerase 
inhibitor

543.5 7.3-9.5 1.3 HCl salt form

Epirubicin EPI Topoisomerase 
inhibitor

543.5 ~ 9.2-12.7 1.3 HCl salt form

Erlotinib HCl EGFR inhibitor 393.4 1 2.7 Soluble

5-fluorouracil 5-FU Antimetabolite 130.1 8 N/A Acids and 
DMSO

Gemcitabine-
HCl

GEM DNA synthesis 
inhibitor

263.2 3.6 –1.5 Soluble
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TABLE 4: (continued)
Drug Abbreviation Mechanism of 

action
Structure MW pKa LogP H2O solubility

Irinotecan Ir Topoisomerase 
inhibitor

586.7 N/A 3 Soluble

Mefuparib 
hydrochloride

MPH Poly(ADP-ribose) 
polymerase 
inhibitor

334.8 N/A Soluble

Paclitaxel PTX Microtubular 
inhibitor

853.9 10.4 2.5 Insoluble

Protoporphyrin 
IX

PpIX PDT 
photosensitizer

562.7 N/A 4.6 Poorly

Quercetin QC N/A 303.2 1.5 N/A Poorly

Resveratrol RSV Multiple 
mechanisms

228.4 9-10.6 3.1 Low

Ruthenium 
polypyridyl

RuPOP Induces apoptosis N/A N/A N/A Soluble

Temoporfin PDT 
photosensitizer

680.8 N/A 8.8 DMSO, not 
H2O

Sorafanib RAF kinase 
inhibitor

464.8 N/A 4.1 DMSO
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TABLE 4: (continued)
Topotecan Topoisomerase 1 

inhibitor
421.4 1.7–9.8 0.5 Soluble

Vincristine VCR Binds to 
microtubles

825 5–7.4 2.8 Slightly in 
alcohol

pKa is the negative base-10 logarithm of the acid dissociation constant (Ka). P is the octanol/water partition coefficient and a measure of lipophilicity. (source: pubchem.
ncbi.nlm.nih.gov and material data safety sheets, MSDS). Some data are not available (N/A).
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approval) there were 205 patents awarded in lipo-
somal based drug delivery for cancer. Shinozawa76 
reported on the efficacy of both neutral and charged 
(non PEGylated) liposomal DOX in 1981, 14 years 
before the approval of Doxil. While cardiolipin is 
not a component of FDA approved liposomal for-
mulations, it was a component in most of the early 
formulations due to strong binding of anthracyclines 
to cardiolipin, which was considered early on to be 
a possible cause of the high toxicity of anthracy-
clines to the heart.77–80 In contrast, Abraxane (ABI-
007, albumin-bound paclitaxel, nab-paclitaxel) was 
developed and approved in 2005 and is based on 
the discovery of the binding of paclitaxel to serum 
proteins. By 2005 only 7 patents were awarded in 
nano-albumin-bound drugs for cancer. Interestingly, 
a Web of Science search returned two pre-clinical 
studies demonstrating in vivo tumor control,81,82 
published after Abraxane was approved. This is 
compared with many more such studies of liposo-
mal doxorubicin.

Antunes83 conducted a patent search and found 
2,306 nanoparticle focused patents in the pharma-
ceutical sector by 2013. Table 5 lists the number of 
awarded patents from the Derwent Innovations In-
dex™. While these numbers likely overestimate the 
number of directly related patents, since the search 
terms may appear as background information and 
many of the patents may not be specifically for drug 
formulations or drug carriers, they do attest to the 
strong interest in commercializing nano-based phar-
maceuticals towards cancer. Figure 1 shows that 
2018 and 2019 were particularly strong years. These 
results may provide an indication of potential future 
commercialization of new nanomedicines. How-
ever, the majority of the patents are from univer-
sities or institutes, not companies, and identifying 
commercial partners to license this type of technol-
ogy is a big challenge.

As stated previously, Doxil was FDA approved 
in 1995 and the first patent issued for liposomal 
drug delivery for cancer was in 1976 (20 years 
prior) while the first publication appeared in 1974, 
a little more than 20 years prior. For Abraxane, 
FDA approved in 2005, the first patent appeared 10 
years prior, and the first publication 20 years prior. 
For MSN drug delivery applications for cancer, the 

first patent and first publication both appeared in 
2006. The earliest clinical trial of a liposomal for-
mulation for cancer listed in the ClinicalTrials da-
tabase was in 1997 (two year after the approval of 
Doxil) and for albumin-bound paclitaxel, 2001 (4 
years before the approval of Abraxane). However, 
Gabizon et al., published the results of a Phase I 
study of liposomal DOX in 1989.84 Segal et al., 
published a human clinical study of liposomal bleo-
mycin in 1976.85 The first published human clinical 
trial of nab-paclitaxel was in 2001.86 Of Doxil in 
particular, Barenholz et al.87 stated that “the first 
provisional patents were filed in 1987/1988 based 
on work started 7 ½ years earlier.” Given compa-
rable timelines, perhaps companies are working on 
commercializing MSN formulation for cancer ther-
apy (first reported in the literature in 2006 and the 
first patent issued the same year). A patent issued 
in 2003 (Nanoparticle Assembled Hollow Spheres) 
described nanoparticles containing silica as a com-
ponent for drug delivery, but it did not mention mes-
oporous. Nevertheless, there are no current clinical 
trials on record (ClinicalTrials.gov) testing MSN 
formulations for drug delivery. There are however 
3 current studies (phase 1 and 2) evaluating cRG-
DY-PEG-Cy5.5-C dots (NCT02106598), 89Zr-
DFO-cRGDY-PEG-Cy5-C’ dots (NCT03465618) 
and 64Cu-NOTA-PSMAi-PEG-Cy5.5-C’ dots 
(NCT04167969) for fluorescence nodal map-
ping and positron (PET) imaging of brain tumors 
and prostate cancer. C dots (Cornell dots) are ul-
tra-small dye-encapsulated core-shell silica parti-
cles synthesized by the Stöber method with alcohol 
as the solvent and C′ (C prime) dots are similar 
except grown in water.88,89 The success of these tri-
als may provide supporting evidence to investigate 
MSNs for delivering chemotherapy drugs. 

If we compare the timeline from the first re-
ported use of pegylated liposomal DOX or albu-
min-bound paclitaxel in tumor-bearing rodents (~ 
1980 and 2002 respectively) to their first test in hu-
mans (1989 and 2001 respectively), to their even-
tual FDA approval (1995 and 2005 respectively), 
we might get a sense of how long to expect before 
one is to see MSNs commercialized. However, the 
lack of complete response of Doxil; and Abraxane 
in humans may have dampened the enthusiasm for 
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TABLE 5: Results of a search of awarded patents in the nanomedicine drug delivery space (as of December 23, 2020)
Key words Total World China US EU Japan Canada India First year

(pharma* OR drug*) AND (nano* OR 
liposom*)

24,508 8327 10,992 9302 5216 4704 2252 1978 1966

(pharma* OR drug*) AND nano* 20,275 6571 9662 7097 3730 3156 1606 1698 1966
(pharma* OR drug*) AND (nano* OR 
liposom*) AND cancer

7630 2963 3762 3005 1794 1375 884 641 1976

(pharma* OR drug*) AND nano* AND 
cancer”

6057 2202 3231 2188 1200 795 598 511 1996

(pharma* OR drug*) AND liposom* 5341 2139 1941 2288 1637 1705 749 363 1976
(pharma* OR drug*) AND liposom* 
AND cancer

2040 957 785 999 706 653 339 178 1976

(pharma* OR drug*) AND nano* AND 
albumin AND cancer

232 74 147 42 41 28 23 19 1995

(pharma* OR drug*) AND nano* AND 
(*silica*) AND *cancer*

299 69 196 72 30 17 12 12 2001

(pharma* OR drug*) AND nano* AND 
*silica* AND *porous* AND *cancer*

170 28 126 34 15 9 6 5 2006
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the cost and time to fully develop MSNs for drug 
delivery. It should also be questioned, what, if any, 
advantage MSNs might have over already approved 

nanoparticle formulations, for example, greater ef-
ficacy (either reduced toxicity or improved survival 
or both) in certain populations or cancer types. Even 
in animal models, complete response (eradication of 
tumor) was not generally observed for Doxil or Ab-
raxane. But increased survival and reduced systemic 
toxicity was observed. 

C. Barriers to Commercialization

Several papers have been published that describe 
the barriers to commercialization of nanomedicines 
for drug delivery.90–92 It is well recognized that EPR 
is not universal in solid tumors and it has been ar-
gued as to how much of a contribution EPR has had 
on the success of nanomedicines to date.93–96 The 
liposomal and albumin-bound drug formulations 
are arguably less complicated than formulations 
with mesoporous silica nanoparticles, and possibly 
involve less risk. However, the choice of the most 
effective liposome composition and developing the 
strategy for maximizing drug loading was not trivial 
and similar optimization studies would need to be 
done for MSNs. The pre-clinical animal studies with 
liposomal and albumin-bound drug formulations 
were largely positive and promising that they might 
not only reduce side effects but even lead to a cure, 
or at least substantial improvements in survival in 
humans. Eradication of the tumor was observed in 
some studies (or more specifically, the tumor was 
no longer palpable). However, while the translation 
to humans was successful, the degree of efficacy 
observed in tumor-bearing rodents did not trans-
late to humans with the same level of response. The 
potential reasons for this (i.e., differences between 
rodent models and human disease, and poor patient 
selection) has been extensively reported on.97–99 So, 
with all the money and time spent, papers published, 
patents awarded, why have nanoparticle-based drug 
delivery systems not led to cures in cancer? While 
there has been considerable progress there is little 
argument that the so-called “silver bullet” remains 
out of reach. While these therapies have proven 
to add benefit to patient’s lives (in terms of qual-
ity of life, reduced side-effects and possibly some 
progression free survival), they have generally not 
led to an increase in disease free life and certainly 

FIG. 1: Results of patent search (as of December 1, 
2020) using (top): Key-words: (pharma* OR drug*) 
AND nano* AND (*porous silica) AND cancer. (middle): 
Key-words: (pharma* OR drug*) AND liposom* AND 
cancer. (bottom): Key-words: (pharma* OR drug*) AND 
(nano* AND albumin) AND cancer.
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not a cure for the majority of patients receiving the 
treatments.11,100–103 

In the past decade, several reviews, opinion 
pieces, editorials, etc. have appeared in reputable 
journals questioning the value of continuing to ex-
pend money, resources and time in this pursuit.104–113 
After all, resources are finite. Several articles have 
offered the argument that the reason for a lack of 
translating the exciting promise of pre-clinical suc-
cess into the clinic is due to either (1) lack of ap-
propriate animal models that accurately reflect the 
disease in humans, (2) the lack of appropriate se-
lection of the patient populations that might bene-
fit most from the therapy and/or (3) the difficulty 
in bringing a cancer therapeutic to market because 
of expense or technology to make manufacturing 
scale-up practical. The challenge of using animal 
models to predict clinical outcomes is well known 
and much discussed.114–118 The cost of bringing a 
new drug to market is estimated to be around ~$2.8B 
for anti-neoplastic drug, which includes the cost of 
failed drugs, and is increasing at a rate well above 
general inflation.119,120 New drugs for oncology ap-
plications have the lowest success rate through phase 
III trials121 but the overall success rate for approval 
after submission to FDA is comparable to drugs for 
other therapeutic areas (81.7%).120 The median du-
ration spent in clinical trials for oncology drugs was 
13.1 years.121 The general attractiveness of nanopar-
ticle-based and polymer-based drug delivery has 
been in the potential to re-package existing drugs 
for improved delivery (PK-PD). The reformulation 
of existing drug molecules onto or into a new deliv-
ery format has many advantages, especially if the 
general safety can be demonstrated and if the carrier 
does not interfere with the drug activity at the target 
site. However, the considerable challenge is the effi-
cient delivery to and off-loading of drug at the target 
site. This point is addressed below.

Abou-El-Enein et al.122 suggest a 12-step pro-
cess for improving the translation of biomedical 
science to clinical success. Anchordoquy et al.123 
summarized a workshop titled “Mechanisms and 
Barriers in Nanomedicine” to facilitate improve-
ments in translating Nanomedicine research to the 
clinic. Sanna et al.124 provided a review of targeted 
nanomedicine which presented a multifactorial 

optimization of the synthesis parameters and char-
acteristics for the development of BIND-014, a tar-
geted polymeric micelle which completed phase 1 
and 2 clinical trials (another phase 2 trial was termi-
nated).7 It was ultimately not pursued but the basic 
“BIND” polymer nanoparticle technology is still be-
ing investigated clinically with AZD2811 nanopar-
ticles (ClinicalTrials NCT03217838).125,126 These 
examples may provide useful guides to improve the 
potential for overcoming barriers to nanomedicine 
commercialization.

D. �Inconsistency in Experimental Design 
and Data Reporting

The way that the nanomedicines (nanoparticles 
or nanoformulations) are categorized in the litera-
ture is confusing and makes comparing the results 
among different groups challenging. A general clas-
sification might be as follows; liposomes (typically 
PEGylated), polymer-drug conjugate (typically PE-
Gylated), nanoparticles from natural or synthetic 
polymers (often PEGylated), antibody-drug conju-
gates, aptamer-drug conjugate, lipid nanoparticles, 
micelles, inorganic nanoparticles (typically iron 
oxide, gold, silica, or combinations), proteins, pro-
tein-conjugates, nanocrystals, and virosomes. There 
is considerable overlap in how the formulations are 
described in the literature. Many review papers are 
unable to directly compare various nanomedicine 
formulations because of the lack of consistency in 
experimental design, reporting of data or incom-
plete or confusing details in the materials and meth-
ods description. There needs to be consistency in 
the way the nanomedicines are categorized, char-
acterized (physio-chemical properties), and tested 
in pre-clinical in vivo studies. For example, the pH 
(and contents) of the solvent used for measuring 
zeta potential are often not provided, providing both 
DLS (hydrodynamic) and SEM/TEM diameter is 
important because they report different characteris-
tics, polydispersity index (PDI), or size (or molecu-
lar weight) distribution is often not reported, loading 
efficiency and capacity should both be reported, 
drug release and degradation to near 100% under 
conditions comparable to plasma, tumor interstitial 
space, and endosomes or lysozomes, depending on 
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their intracellular fate or intended use is often not 
reported. Percent surface coating of targeting moi-
ety are usually not reported. When reporting the size 
of the particles, some provide a range, while others 
provide PDI and still others the standard deviation. 
Many papers do not report how freeze-drying (lyo-
philization) affects the formulation stability and size 
after resuspension.

Two recent analyses by the same group127,128 
reported that about 1% of an injected nanoparticle 
formulation is actually taken up by a tumor and 
that less than 0.0014% actually makes it into cancer 
cells. A more recent analysis found higher delivery 
efficiency of 2.23%.129 While these studies are thor-
ough, many studies reported in the literature are not 
included in their analyses due to inconsistency in ex-
perimental design, or data reporting, or insufficient 
number of pharmacokinetics data points to calculate 
area under the curve (AUC). A closer examination 
of127 finds that most of the papers included in the 
analysis were for imaging (i.e., not therapy). Few of 
the papers reported the amount of drug (or imaging 
tracer) loaded into the nanoparticle carrier, so it is 
not possible to estimate how much drug (or tracer) 
was actually delivered to the tumor. In fact, a review 
of Nanomedicine drug delivery papers shows that in 
many, either the data are not provided, or the data 
provided are incomplete. For example, some papers 
report drug loading efficiency (i.e., the percentage 
of the drug added during the synthesis process di-
vided by the drug loaded into the carrier) but do not 
report the actual amount of drug in the particle, i.e., 
the drug loading capacity (mass of drug per mass 
of carrier in wt%). It is often not possible to inter-
pret the drug loading capacity from the loading effi-
ciency based on the experimental details provided. 
Often, the term “loading efficiency” is used without 
explicitly defining what it means, or “efficiency” is 
used when it apparently (or even explicitly) means 
“capacity.” In other words, the precise meaning of 
loading efficiency is not always clear when it is 
used. While loading efficiency is important from a 
materials conservation perspective (especially for 
expensive drugs), it is the loading capacity (drug 
content) that is most important in predicting the 
amount of active drug that actually reaches the target  
(tumor).

Size and surface charge are other particle charac-
teristics that are reported very inconsistently across 
articles. When size is reported it is not always clear if 
the size is hydrodynamic (i.e., measured by dynamic 
light scattering or a similar method) or by electron 
microscopy (SEM or TEM). If SEM or TEM size is 
reported, it is not always clear how many particles 
were measured, or if it is simply an estimate from 
a single image view. Often a plot of hydrodynamic 
size distribution may be provided (generally on a 
log scale), but not the actual mean value. Sometimes 
the size of the base mesoporous silica nanoparticle 
is reported, but not for the final loaded and coated 
product, or it may not be clear. The surface charge 
(zeta potential) is often not reported, or not reported 
for the final product, and typically measured in H2O 
or PBS and not in the presence of plasma proteins. 
Often synthesis condition details are vague and not 
explicitly stated (volumes, concentrations, reaction 
temperature, details of the process and conditions 
for removing surfactants, etc.).

For a therapeutic drug carrier, the drug must be 
released from the carrier close enough to its site of 
action to be effective. Another major inconsistency 
is the reporting of drug release from the nanoparticle 
carrier. Either the experimental conditions are not 
clear, the experiment is not carried out long enough 
to estimate the time for more than 90% of the drug 
to be released, or even the data might not be pre-
sented at all. When the dialysis membrane method 
is used, including a free-drug group is necessary 
to accurately model the release kinetics. For posi-
tively charged drugs electrostatically bound to MSN 
release is enhanced at low pH. Therefore, many 
experimental designs for MSNs include a low pH 
condition to simulate the conditions in a tumor. The 
pH in the experimental conditions reviewed in this 
paper range from as low as 1 to 6.8 pH units. While 
acidosis has been reported and explained,130–134 due 
to tumor microenvironment heterogeneity, it is not 
settled that tumor micro-environment pH levels are 
consistently low enough to induce drug release in all 
tumors or even in all regions of a tumor.135,136 Other 
release triggering mechanisms have been designed 
into the formulations and have been reported, most 
often glutathione (GSH) or reactive oxygen spe-
cies (ROS).137–140 DOX release from Doxil under 
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physiological conditions is reported to be slow, ~ 
0.5% at 2 h at pH 7.4 and < 3% at pH 5.5 at 2 h141 or 
~ 30% at 12 d at pH 7.4.142 Russell142 measured an 
~ 2× greater rate constant at pH 5. Based on these 
two studies, DOX release from Doxil appears to be 
comparable to that from MSNs.

Here, we present the case of MSNs present-
ing evidence from pre-clinical studies that showed 
promise in tumor-bearing mice (and in a few cases, 
rats). Since there are no reported clinical trials us-
ing MSNs to deliver therapeutics in cancer (https://
www.clinicaltrials.gov) it may be assumed that, for 
whatever reason, none of these formulations is close 
to becoming a commercial clinical product. Our 
contention is that, in addition to the limitations listed 
above, there is also a big problem with the lack of 
consistent reporting of results from pre-clinical in 
vivo studies, the complexity of the formulations re-
ported that make them impractical for scale-up and 
manufacturing, and possibly a difficulty in repro-
ducing data reported in the literature, as discussed 
in,143,144 with recommendations for the reporting 
of Nanomedicine data presented at the end of the 
paper.

II. METHODOLOGY

In the analysis for this paper a Web of Science™ 
search was conducted for articles that report studies 
investigating MSNs carrying chemotherapy drugs 
that have been tested in tumor bearing rodents and 
in which tumor response was reported. Studies in 
which drug was injected directly into the tumor were 
not included. Studies that described encapsulating 
DNA, RNA or proteins but without chemotherapy 
were also not included. The analysis concentrates 
chiefly on carrier size, charge, surface coating, drug 
loading, drug release and tumor response. However, 
as will become clear, it is difficult to arrive at firm 
conclusions due to the fact that the experimental de-
sign and data reporting are so inconsistent among 
research groups. 

The literature search was conducted using 
search terms to find as many relevant papers as 
possible. However, it is possible that some relevant 
papers were not captured. The original research ar-
ticles were evaluated to determine if drug loading 

and release from the carrier were reported and if tu-
mor response was measured. Studies that reported 
the delivery of proteins or DNA/RNA, but not che-
motherapy, were excluded. Of the studies included, 
some incorporated cellular or vascular targeting 
(other than passive EPR targeting). Some report the 
size of the carrier from SEM/TEM measurements 
and/or DLS, either as a graphic only or explicitly 
as a number. Some report zeta potential, typically in 
PBS or water dispersant. For data that were reported 
in graphical form, but the values were not explicitly 
stated, the program GetData Graph Digitizer (ver-
sion 2.26.20.20; http://getdata-graph-digitizer.com/) 
was used to extract data from the plots.

Tumor inhibition ratio (TIR) is defined as (1-
WT/WC) where WT is the weight (or volume) of the 
tumor at the end of the study in the treatment group 
and WC is the tumor weight (or volume) in the pla-
cebo group. If tumor ex vivo weight at the end of the 
study was provided, then TIR was calculated from 
the weight, otherwise it was calculated from the in 
vivo volume measurements. Increased life survival 
(ILS) is defined as 100 × (treated mean survival)/
(control mean survival) – 100. Mean survival time 
is determined from a Kaplan-Meier plot as (number 
of days of the first death + number of days of the 
last death)/2. If all animals were not dead by the end 
of the study, the data are reported as % surviving 
at the last time point. Group means of nanoparticle 
characteristics and TIR were compared by ANOVA 
and Pearson Correlation using Minitab 19 with p < 
0.05 used for hypothesis testing. Comparing TIR 
among groups, the ANOVA was followed by a post 
hoc Dunnett comparison with either Free-DOX or 
MSN-DOX [without targeting, thermal therapy 
(TT), photodynamic therapy (PDT), or radiation 
therapy (RT)] as the control group. 

III. RESULTS

In total, data from 166 MSNs, 13 liposomal doxo-
rubicin and 3 Abraxane studies are included in this 
paper. Some papers tested in multiple tumor models. 
Several chemotherapy drugs were used (Table 4), 
including various shRNA, DNA, enzyme inhibitors, 
herbal or dietary supplements, as well as combina-
tions (though not listed in the table). Table 6 provides 
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a distribution of the types of formulations. Some of 
the MSN studies reported multiple formulations. 
Some formulations induced PDT or TT. The thermal 
therapy was induced by external stimulation with 
near infrared (NIR) light of gold (Au), copper sul-
fide (CuS) or indocyanine green (ICG) or alternating 
magnetic field (AMF) or radiofrequency (RF) stim-
ulation of Fe3O4. One study combined MSN loaded 
DOX with RT. One study combined chemotherapy, 
PDT and TT and three studies combined TT and 
PDT without chemotherapy drug. Numerous studies 
did not report loading capacity. In several papers, 
neither the loading capacity nor loading efficiency 
was reported. An attempt was made to contact those 
authors and some responded with the data.

The synthesis methods employed in the pa-
pers reviewed for this analysis include the Stöber 
method, modified Stöber method, micro-emulsion 
(oil-in-water), and reverse micro-emulsion (water-
in-oil). For emulsion methods several surfactants 
were used, different silica precursors and differ-
ent base initiators (Table 3). Some MSNs were 
not functionalized, and some were functionalized 
with amines, carboxyl or suflhydryl groups. Most 

of the formulations in this review included a step 
to remove excess surfactant; by solvent extraction 
(using various solvents with (71) or without (20) 
reflux condition or with sonication (4)), calcination 
(19), centrifuge washing with various solvents (23), 
ion-exchange (2), dialysis (2). Others did not report 
doing this step. Some formulations included a core-
shell design in which the core was of a material other 
than silica (e.g., iron oxide, gold) and some were 
hollow. Many formulations included a hydrophilic 
coating (e.g., PEG). Many formulations depend on 
pH triggering such that the strong electrostatic inter-
actions of negative charge of the silica-oxide surface 
and positively charged drug is weakened under low 
pH conditions allowing the drug to be released, or 
a thiol linker is incorporated so that the drug will 
be released in the high GSH environment of the tu-
mor, or the MSN cores are capped with a molecule 
that will release the drug in the presence of either 
low pH, elevated temperature, GSH, or ROS. Table 
7 provides the nanoparticle characteristics of each 
study, Tables 8–11 present the in vivo efficacy data 
for the MSN studies and Table 12 the efficacy stud-
ies for liposomal and Abraxane studies. In several 

TABLE 6: Distribution of the types of formulations included in this paper
Formulation No. of 

studies
With 
PEG

With 
targeting

With 
triggered 

release (pH)

With triggered 
release (heat; 

GSH; ROS, etc.)

Solid core 
other than 

MSNs

Hollow 
core

DOX w/o 
combination 
therapy

50 16 27 12 9 9 4

DOX + TT 22 8 12 6 7 10 6
DOX + PDT 7 3 3 1 1 1 2
DOX + RT 1 1 1 0 0 1 0
DOX + other 
chemo drugs 

23 20 11 3 4 6 1

Other 
chemo-drugs

55 28 29 7 4 13 5

PDT only 3 1 1 0 0 0 1
TT only 2 0 0 0 0 2 0
PDT + TT 3 2 3 2 2 2 0
Total 166 79 87 31 27 44 19

Note that the two columns of “triggered” release formulations may be greater than the number of studies because some formulation 
possessed both pH responsive and molecular responsive release characteristics.
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TABLE 7: MSN formulation characterization
Author DOX LC Size 

TEM
Size DLS ZP (mV) Target TT/PDT Template Drug(s) PEG Core Coated/

capped

Studies with DOX w/o combination therapy

Chen 2020199 31.4 31.4 375 –28 N  CTAB DOX N dSiO2 (120 nm) PLL(cit)

Chen 2020245 16.3 16.3 60 104 –51 A-CAIX
Ab

CTAC DOX N MSN N

Chen 2016195 8.41 8.41 200 302 –45 HA/CD44 CTAB DOX N MSN β-cyclodextrin

Cheng 
2017246

7.8 7.8 193 –4.8 FA CTAB DOX Y MSN olydopamine

Cheng 
2017247

10.1 10.1 221 2.6 N CTAB DOX Y MSN PDA

Dai 2015248 4.9 4.9 117 –16.3 FA CTAB DOX N MSN Salphdc

Fang 2019249 25 160 HA/CD44 N CTAB DOX N FeO4 N

Gao 2012201 15 131 0.4 FA N Stober DOX N SiO2 SiO2

Han 2016194 17 48 –22.6 TAT N CTAB DOX N MSN Galactose

Hou 2017250 35.4 210 24.0 FA N CTAB DOX Y Hollow PDA

Hou 2016251 57.5 255 289 N N Commercial DOX N MSN N

Huang 
2017252

14.6 116 –24.3 Lactobionic acid N CTAB DOX N SiO2 core N

Jiang 201870 1 190 N N Tween-80 DOX N MSN N

Kang 2019253 99 –18.9 HA/CD44 N CTAB DOX N MSN N

Khatoon 
2016254

15.6 150 –12.6 N N CTAB DOX N MSN N

Li 2018196 12.2 114 600 Peptide + magnet N CTAB DOX N Fe3O4 N

Li 2018147 21.1 134 –35.4 N CTAC DOX N MSN N 

Li 2017215 3 35 68 TSH N Commercial DOX Y MSN N

Li 2014255 200 21 N N CTAB DOX N MSN Polymer

Lin 201863 11.2 130 Biotin N CTAB DOX Y MSN N

Liu 2020256 21 96 –15 N N CTAB DOX Y MSN PEG-b-PLLDA

Liu 2019257 26 110 –14.9 HA/CD44 N CTAB DOX N MSN N

Liu 2019258 4.2 154 –19.8 N N CTAC DOX N MSN N

Liu 2017259 29.1 150 N N CTAB DOX N MSN sericin

Liu 2016260 10 120 7.4 N N CTAB DOX Y Hollow beta-
cyclodextrin

Meng 2011200 3 50 46.7 N N Pluronic 
F127-CTAB

DOX N MSN phosphonate
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TABLE 7: (continued)
Author DOX LC Size 

TEM
Size DLS ZP (mV) Target TT/PDT Template Drug(s) PEG Core Coated/

capped

Studies with DOX w/o combination therapy

Palanikumar 
2018261

32 150 –3 N N CTAB DOX Y MSN PDS

Qiao 2019262 28.6 100       N Hexadecyltrime- 
thylammonium 

bromide

DOX N MSN tryptophan 
mediated Fe3O4 

cap

Ramaya 
2017263

9.3 125 25.6 FA N Stober DOX N Gold N

Shao 2016264 20 300   6.59 mag N CTAB DOX Y Fe3O4 MSN

Shen 2019265 28 50 –0.1 N N CTAC DOX Y MSN MPTMS

Si 2020266 66 150 190 –10 MUC-1 N CTAB DOX N MSN N

Tian 2016267 26.5 100 108   Tf N CTAB DOX N MSN N

Turan 2019202 20 80 –32.5 CREKA RF CTAB DOX Y Iron Oxide N

Turan 2019203 19.5 74 RGD/ CREKA RF CTAB DOX Y Iron Oxide N

Wan 2020268 10.2 120 245 –29.8 N N CTAB DOX N Fe3O4 MSN

Wang 2019269 40 70 90 –34.7 ICAM-1 N CTAB DOX Y MSN N

Wei 2017270 16.3 170 –15.9 peptide N CTAB DOX N MSN N

Xu 2013271 6.5 109 110 0.9 N N CTAB DOX N MSN gelatin

Yang 2017272 4.8 50 –20.6 N N Hyper- 
branched 

polyglycerol

DOX N MSN N

Yang 2016273 25.6 201 –32.1 N N CTAB DOX N MSN N

Yang 2016204 15.9   155   FA N CTAB DOX N Hollow DBA capping 
agent

Yang 2016273 25.6 140 201 –32.1 HA/CD44 N CTAB DOX N MSN hyaluronic 
acid /Sodium 

alginate

You 2017274 42 100 –8.8 FA N CTAC DOX Y MSN PEI-PEG

Zhang 
2017275

33.4 60 80 10 N N CTAB DOX Y MSN N

Zhang 
2014276

5 48.3 61 –15.2 FA N CTAC DOX Y MSN N

Zhao 2018277 3.9 160 N N CTAB DOX N MSN N

Zhao 2016278 2.8 128 N N Triton-X-100 DOX N MSN N

Zhou 2018279 20 158 Tf N CTAB DOX N Hollow N
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TABLE 7: (continued)
Zhu 2017280 20.56   253 –11.9 VEGF N CTAB DOX N MSN LDH

DOX + TT

Cao 2020281 20.6 187 –38.8 FA PTT CTAB DOX N Hollow PDA

Chai 2018282 47   294 5.4 N PTT C18TMS DOX; MoSe2 Y Hollow PDA

Chen 2019283 15.4 169 –17.3 HA/CD44 PTT CTAB DOX N MSN PDA

Cheng 
2018284

15.9 223 –17.9 N PTT CTAB DOX N MSN CuS

Fang 2018285 41 120 206 –16.7 HA/CD44 PTT C18TMS DOX N Hollow QDs

Feng 2020286 43   287 28.2 N TT CTAB DOX N Hollow ZnO caps

Gao 2018198 46 750 FA AMF CTAB DOX Y Fe3O4 N

Jin 2018287 42 100 –8.8 FA N CTAB DOX Y Gold N

Lei 2019288 200 –2 N PTT CTAB DOX N MSN PDA

Lei 2016289 1.4;6.68 60 82 4.8 RGD PTT CTAC DOX;ICG Y MSN β-cyclodextrin

Li 2020290 42.9   118 21.3 N PTT CTAC DOX N Hollow N

Li 2020206 22.5 76X35   –8.5 TAT-RhB PTT CTAB DOX Y GNR N

Li 2019207 5.3 50 138 –16.3 RGD PTT CTAB DOX N Ag2S3 DQ N

Li 2018205 60.9 –4 Her-2 PTT Stober DOX N PVP-Bi2-S3 
NP

N

Lu 2018291 49.9 100 120 –13.2 RGD PTT CTAC DOX Y Bi2S3 N

Ren 2020193 77.4 150   30 FA PTT CTAB DOX N MSN BPQDs

Wang 2019292 19.9 139 –13 N PTT CTAB DOX Y Gold N

Wang 
2018197

68.7 95X145 600 21.4 N PTT CTAB DOX N GNR N

Wei 2018208 20.2 110 120 ~ 0 N PTT NR DOX N MSN CuS

Yang 2020293 50   250 37.3 FA PTT CTAB DOX Y Hollow N

Zhang 
2020209

10   168 NR N PDT CTAB DOX N CuS MnO2 cap

Zhong 
2020294

21.8   201 –7.0 N PTT CTAB DOX N GNR N

DOX + PDT

Fang 2019295 9.6 274 –20 N N Stober DOX; Ce6 N Hollow N

Li 2018296 45.7 
DOX; 

11.6 PpIX

  120 15 RGD PDT CTAC DOX; PpIX Y Hollow MSN

Liu 2017297     235 –18 Magnetic+ FA PDT CTAB DOX Y Fe3O4 Lipid bilayer

Rao 2018298 16.2 116 –34 N N CTAB DOX; Ce6 Y MSN N
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TABLE 7: (continued)
Author DOX LC Size 

TEM
Size DLS ZP (mV) Target TT/PDT Template Drug(s) PEG Core Coated/

capped

DOX + PDT

Su 2017299 39.8 108 –14.0 N N CTAB DOX; Ce6 N MSN RBCV

Wang 
2019b300

140 –9.2 Magnet N CTAB DOX; Ce6 Y MSN Fe3O4

Xu 2020301 10.5; 36.8 150 200 –43 N PDT CTAB DOX; Ce6 N MSN N

DOX + Radiotherapy (RT)

Wang 2017302 61.7 225X110     FA N CTAB DOX Y GNR N

DOX + Non-DOX drug

Chen 2016303 130 184 64.5 N N CTAB DOX; shRNA N MSN shABCG2

Ding 2020304 4.1; 7.6 130 263 –8.3 peptide N CTAC DOX; α-TOS N MSN carboxymethyl 
chitin

Fang 201865 32.6 102 –28.6 HA/CD44 N Triton-X-100 DOX; Quercetin N MSN N

He 2020305 8.3 120 166   N N CTAB DOX; Curcumin N MSN N

He 2016306 80 –38 N N Stober DOX; erlotinib N MSN SPC/
HHG2C18/

Chol

Hu 2017307 5.1 159 14 N N CTAC DOX; alpha-TOS Y MSN N

Kankala 
2020308

  100     N N CTAB DOX:Platinum N MSN Chitosan

Kong 2017309 11.6 243 –12 N N CTAC DOX; IL2; ATRA Y Hollow N

Li 2018210 2.9 190 –21.3 FA PTT CTAB DOX; DNA N Ag2S QD N

Li 2017211 21 327 52 N N CTAB DOX; shRNA N SiO2 N

Li 2017211     204 –10.8 EpCAM aptamer N CTAB DOX; DM1 Y MSN hydrochloride 
dopamine

Liu 2018310 8.2 DOX 100 183 23.3 WL8 peptide N CTAB DOX; miRNA-145 Y MSN PEI

Nie 2020212 25.8; 20.2 189 –23.8 N N CTAB DOX; MPH Y MSN CCM

Ramasamy 
2018311

8.1   100 –35.0 N PTT CTAB DOX; Se N GNR (40X9 
nm)

MSN

Su 2014312 2.75 108 –11.2 EGF N none DOX; CA-4 Y liposome SiO2

Wang 201864 6 66 100 19.2 FA PTT Triton-X-100 DOX; Se Y MSN N

Xie 2020313 2.15; 
10.89

37 200 35.3 N9 N CTAC DOX; NuBCP9 N MSN G5

Xing 2020213 11.6 130 –18.2 N PTT CTAB DOX; PTX N Gold N

Xue 2017314 262 12.0 N N CTAC DOX; miR-375 Y MSN lipid
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TABLE 7: (continued)
Yin 2018315 12.1 

DOX
93.9 107 –33.6 iRGD N CTAB DOX; let-7a mRNA Y ZnFe2O4 PEI

Zhang 
2019316

58.1; 54.2 300X100   –15.4 HA/CD44 N CTAB DOX; berberine N MSN N

Zhang 
2014317

6 165 Aptamer N CTAB DOX; CytC N MSN N

Zhao 2017214 23.2 110 124 –47.4 N N CTAB DOX; siRNA N MSN N

Non-DOX drug w/o PDT or TT

Ansari 
2018318

16.2 19 magnetic N Pluronic  
F127 + CTAB

Epirubicin N Fe3O4 N

Babaei 
2020319

32   125 1 AS1411 DNA 
aptamer

N CTAB Campothecin; iSur 
shRNA

Y MSN N

Che 2015320 9.7   273 –5     CTAB paclitaxel N Fe3O4 (10 nm) gelatin

Chen 2020321 15.3   197 –23.7 N N CTAC paclitaxel Y Hollow PDA

Chen 2019322 8.7; 7.6 128 –26.4 N N CTAB 5-FU + ß-lap NQO1 
inhibitor

Y MSN N

Choi 2016323 21   120 1 N N CTAB axitinib; celas Y MSN Lipid bilayer

Ding 2015324 35.7 100 180 10 N N CTAC (-)-epigallocatechin-
3-gallate

N MSN N

Du 2019325 7.63 40 HA/CD44 N CTAC PTX N MSN Poly (L-lysine)

Fei 2017326 6.8 152 150 20 RGD N CTAB ATO Y Hollow lipid

Feng 2019327 56; 84 160 230 –36 N N CTAB Evodiamine; 
Berberine

Y MSN NIPAM

Gao 2019328 3.2; 32.2 180     N N CTAB paclitaxel; curcumin Y MSN Lipid bilayer

Goto 2017329 7.9 105 –2.8 N N CTAB GEM Y MSN PICsomes 
polymeric 

vessel

Hanafi-Bojd 
2015330

8.4 383 –7 N N CTAB Epirubicin Y MSN N

Hanafi-Bojd 
2016331

248 –20.2 N N Pluronic  
F127 + CTAB

EPI Y MSN N

Hu 2019332 9.4 155 –23 N N CTAB resveratrol N MSN N

Huo 2017333 16.6; 15.9 255 –27.6 N N CTAB Gox; Fe3O4 Y MSN N

Ke 2018334 32 180 220 –36.0 transferrin Tf N CTAB sorafenib N Hollow N

Kundo 
2020335

12.6   414 –36.6 FA N CTAB umbelliferone/
coumarin

N MSN poly acrylic 
acid 

Li 2020336 5.5; 1.8   299 –51.6 FA N CTAB pactlitaxel; TanIIA Y MSN Lipid bilayer
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TABLE 7: (continued)
Author DOX LC Size 

TEM
Size DLS ZP (mV) Target TT/PDT Template Drug(s) PEG Core Coated/

capped

Non-DOX drug w/o PDT or TT

Li 2020217 7.5   90 –12.2 asialoglycoprotein 
receptor

N CTAB irinotecan (CPT-11) N MSN lipid

Li 2019337 27.2; 32.7 365 428 –15.9; 
33.1

N N CTAB Losartan;GEM N Fe3O4 N

Liu 2020338 5.3; 5.1   227 chondroitin sulfate N CTAB paclitaxel; quercetin N MSN chondroitin 
sulfate

Liu 2020338 4.23; 2.46     neutral FA N CTAB norcantharidin 
(DM-NCTD); 

ABT-737

N MSN Lipid Bilayer

Liu 2019149 40 78 130 –11 N N CTAC irinotecan Y MSN N

Liu 2018339 10; 2.2 130 156 –2.4 N N CTAB GEM; Pt N MSN Chitosan

Lu 2010340 1 130 FA N CTAB CPT N MSN N

Meng 
2015341

25; 2.5 75 101 –27.2 N N CTAC GEM; PTX Y MSN Liposome

Mu 2017342 21.5 160 –13.8 N N CTAB sorafenib Y MSN PLH-PEG

Murugan343 15.5; 20.1 50 48 18.4 RGD/TAT N CTAC Topotecan (TPT)/
metformin (MT)

N MSN N

Pan 2017344 7.5 136 199 –8.7 RGD N CTAB 5-FU N MSN N

Paredes 
2020345

  116 323 6.4 FA N CTAB (MSN-AP-Sn) N MSN N

Qu 2018346 110 FA N CTAB Topotecan (TPT) N MSN N

Ren 2018347 100 N N CTAB Campothecin N MSN MnOx-SPION

Tang 2013348 14.8 46 73 N N Stober Camptothecin Y MSN N

Tao 2019349 8.2 142 –13.9 N N CTAB ATO Y MSN Polyacrylic 
acid

Wang 2017350 NR 90 150 NR LA N CTAB PTX Y MSN N

Wu 2020351 20.3       N N CTAB CaO2 N Hollow polyacrylic 
acid

Xu 2017352 24 100 FA N CTAB PTX Y MSN N

Zhang353 8.6; 3.2 45 260 5.0 N N Igepal CO-520 cisplatin; acriflavine Y cisplatin N

Zhao 2017354 20.5 80 211 7.7 lactobionic acid N CTAC sorafenib N MSN N

  21.3 80 197 6.3 lactobionic acid N CTAC ursolic acid N MSN N
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TABLE 7: (continued)
Non-DOX chemo + TT and/or PDT and/or RT

Huang 
2020355

NR   115 –10.5    N NR quercetin N MSN cancer cell 
membrane

Hu 2019356 16.7 141X66   –20.4 AE105-peptide TT CTAB Cisplatin N GNR PEI

Li 2019357 0.15 MB; 
0.25 Pt

45   39.0 FA PDT CTAB MB; Pt N MSN Protein shell

Li 2019218 19.1 225X110   4.7 FA PTT CTAB Berberine Y GNR N

Liu 2012216 185 –9.5 Tf PTT Stober Docetaxel Y SiO2 SiO2

Luo 2016358 1.9 54X24   –13.4 LA TT+PDT CTAB Cisplatin; AIPsS4 Y GNR SiO2 + 
β-cyclodextrin

Shao 2020219 15 CQ   235   N PTT CTAB Chloroquine; 
Glucose oxidase

N PDA 
polydopamine

N

Sun 2019220 10 70   24.0 N PTT CTAB Zoledronate N GNR N

Thapa 
2017222

10 IR820   160 –30.0 cyclosporine PDT CTAB bortezomib Y MSN Lipid bilayer

Wang 2020359 6.23 135   –32.6 CCM PTT CTAB irinotecan N ZGGO CCM

Wang 2019360 8.1   260   FA PTT CTAB tirapazamine TPZ Y MSN N

Wu 2019221 46.1; 13.8   115 –8.7 N PTT CTAC ICG; paclitaxel Y Hollow N

Xing 2018361 19.9 100X250     Mag MTT CTAB curcumin Y Fe3O4 MSN

Zhang 
2019362

3.5; 1.5   220 –18.5 EGFR PTT CTAC erlotinib; ICG N MSN ZnO QD cap

Zhao 2017354 24.6 206X112   –21.4 Tf PDT CTAB GEM Y MSNR Gold

Studies with PDT only 

Brezániová 
2018363

20 44 174   N PDT CTAC temoporfin  N MSNN  

Du 2020364 19.7 275 320   N PDT C18TMS Ce6; MnOx Y Hollow N

Ma 2018 
Ru@
MSNs-20148

23.7 20 24 37.1 FA-PEI N CTAB RuPOP N MSN N

Ma 2018 
Ru@
MSNs-40148

21.1 40 44 18.8 FA-PEI N CTAB RuPOP N MSN N

Ma 2018 
Ru@
MSNs-80148

17.6 80 106 21.2 FA-PEI N CTAB RuPOP N MSN N
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TABLE 7: (continued)
Author DOX LC Size 

TEM
Size DLS ZP (mV) Target TT/PDT Template Drug(s) PEG Core Coated/

capped

TT only (no chemo) 

Yang 2019365 57.2   210 –28.6 N PDT CTAB TPPS4 (NIR PTT 
sensitizer)

N MSNR Gold

Zhang 
2020366

      N PDT CTAB N/A N GNR N

TT and PDT (no chemo) 

Liu 2018367 6 79X37   –9.4 N PDT + PTT CTAB ICG Y  GNR (58X16 
nm)

CS(DMA)-PEG

Wang 2019368 10.8 250X100 300 –20.0 Cancer Cell 
Membrane

TT + PDT CTAB Ce6 N Fe3O4 MCF-7 cell-
derived CM

Zhang 
2020369

11 Ce6   204 –26.5 FA PTT + PDT CTAB Ce6; CuS Y MSN PDA
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TABLE 8: Tumor inhibition ratio for MSN formulations with DOX without TT, PDT, or RT
Study Group Target Ex stim Tumor Mouse Drug Dose  

(mg/kg)
Start TV 

(mm3)
%TIR

Chen 2020199 DOX N/A N/A 4T1 mouse 
epithelial breast

Balb/c DOX 7 × 5 70 29

DOX@HMSN-SS-PLL — — — — — — — 47
DOX@
HMSN-SS-PLL(sa)

— — — — — — — 67

DOX@
HMSN-SS-PLL(cit)

— — — — — — — 86

Chen 2020245 DOX@MSNs A-CAIX Ab N/A 4T1 mouse 
epithelial breast

Balb/c DOX 4 × 6 360 39

DOX@MSNs-CAIX — — — — — — 234 62
Chen 2016195 DOX@MSN-ss-COOH HA/CD44 N/A 4T1 mouse 

epithelial breast
— DOX 7 × 3 30 29

DOX — — — — — — — 37
DOX@MSN-ss-GHA — — — — — — — 58

Cheng 
2017246

MSNs@PDA−PEG−FA FA N/A HeLA human 
cervical

nude DOX 4 × 5 80 14

DOX — — — — — — — 56
MSNs-DOX@
PDA−PEG

— — — — — — — 73

MSNs-DOX@
PDA−PEG−FA

— — — — — — — 84

Cheng 
2017247

drug-free MSNs@
PDA-TPGS

N/A N/A A549- human 
alveolar carcinoma

— DOX 5 × 5 80 21

DOX — — — — — — — 60
MSNs-DOX@
PDA-PEG

— — — — — — — 76

MSNs-DOX@
PDA-TPGS

— — — — — — — 90

Dai 2015248 HPSN FA N/A HepG2 human 
liver

nude DOX 20 × 3 50 5

DOX — — — — — — — 38
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TABLE 8: (continued)
Study Group Target Ex stim Tumor Mouse Drug Dose  

(mg/kg)
Start TV 

(mm3)
%TIR

DOX@HPSN — — — — — — — 46
DOX@
HPSN−Salphdc−FA

— — — — — — — 68

Fang 2019249 DOX HA/CD44 N/A 4T1 mouse 
epithelial breast

Balb/c DOX 7 × 1 50 83

HA-MSN — — — — — — — 6
DOX-HA-MS — — — — — — — 61
DOX-NH2-MSN — — — — — — — 72
DOX-HA-MSN — — — — — — — 80

Gao 2012201 FA-SN FA N/A HeLA human 
cervical

nude DOX 4 × 10 100 4

DOX — — — — — — — 82
DOX-SN — — — — — — — 63
DOX-FA-SN — — — — — — — 96

Han 2016194 bare CSNP TAT N/A H22 murine 
hepatic

Kumming DOX 4 × 2 110 5

DOX — — — — — — — 46
CSNP w/non-cleavable 
PEG

— — — — — — — 68

CSNP w/non-charge-
reversible shell

— — — — — — — 68

CSNP w/o PEG — — — — — — — 76
CSNP w/o GAL — — — — — — — 80
CSNP w/o TAT — — — — — — — 80
CSNP (low dose) — — — — — — — 86
CSNP w TAT — — — — — — — 92

Hou 2017250 silica@PDA-PEG FA N/A 4T1 mouse 
epithelial breast

Balb/c DOX 7 × 5 NR 9

silica@PDA/DOX-PEG — — — — — — — 24
silica@PDA/
DOX-PEG-FA

— — — — — — — 62
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TABLE 8: (continued)
Hou 2016251 DOX N/A N/A PC3 Human 

prostate
nude DOX 6 350 71

HMON — — — — — — — 79
Huang 
2017252

HMSNs-DOX lactobionic 
acid

N/A HepG2 human 
liver

nude DOX 20 × 3 50 15

DOX — — — — — — — 49
HMSN@DOX — — — — — — — 60
HMSN-S-S-CPA-
CytC-LA@DOX

— — — — — — — 83

Jiang 201870 placebo N/A N/A EMT6 murine 
mammary

Balc/c DOX 5 × 10 300 —

DOX — — — — — — — 10
SiNPs/DOX — — — — — — — 54

Kang 
2019253

DOX HA/CD44 N/A 4T1 mouse 
epithelial breast

NR DOX 5 86 18

DOX@MAN/HAP — — — — — — — 38
HA-DOX@MSN/HAP — — — — — — — 63
oHA-DOX@MSN/HAP — — — — — — — 92

Khatoon 
2016254

DOX N/A N/A SCC7 murine 
squamous cell

NR DOX 4 × 5 160 27

DOX-MSN — — — — — — — 61
DOX-Z-MSN — — — — — — — 76

Li 2018196 Peptide- Fe3O4@MSN/
DOX

peptide + 
mag

N/A HT-1080 human 
fibrosarcoma

nude DOX 7 × 1.6 100 76

Peptide-Fe3O4@MSN/
DOX + Magnet

— — — — — — — 84

Li 2018147 DOX N/A N/A H22 murine 
hepatic

Kunming DOX 3 × 4 100 70

MSN5 — — — — — — — 24
DOX/MSN2 — — — — — — — 85
DOX/MSN5 — — — — — — — 97
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TABLE 8: (continued)
Study Group Target Ex stim Tumor Mouse Drug Dose  

(mg/kg)
Start TV 

(mm3)
%TIR

Li 2017215 DOX TSH N/A FTC-133 human 
follicular thyroid 
carcinoma

NOD 
SCID

DOX 3 × 5 212 47

SiO2@DOX — — — — — — — 67
TSH-SiO2@DOX — — — — — — — 82

Li 2014255 DOX N/A N/A HeLA human 
cervical

nude DOX 6 × 4 7 40

DOX-loaded LbL-MS — — — — — — — 63
Lin 201863 DOX Biotin N/A HTC-116 human 

colorectal
nude DOX 7 × 5 100 11

DOX/SLN-PEG — — — — — — — 32
DOX/SLN-PEG-Biotin — — — — — — — 68

Liu 2020256 RCMSN N/A N/A MCF/ADR nude DOX 4 × 5 100 –4
DOX — — — — — — — –7
DOX@UCMSN — — — — — — — 61
DOX@RCMSN — — — — — — — 70

Liu 2019257 DOX HA/CD44 N/A A549- human 
alveolar 
carcinoma

nude DOX 8 × 5 100 19

DMMA-MSN/DOX — — — — — — — 47
HA-MSN/DOX — — — — — — — 60
HA-JMSN/
DOX-DMMA

— — — — — — — 79

Liu 2019258 MSN@CaCO3@CM N/A N/A LNCaP-AI nude DOX 3 × 5 100 0
DOX/MSN@CaCO3@
CM

— — — — — — — 71

DOX — — — — — — — 38
Liu 2017259 SMSN N/A N/A MCF-7/MDR 

human breast
nude DOX 4 × 5 100 –3

DOX — — — — — — — 28
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TABLE 8: (continued)
DOX@SMNS — — — — — — — 71

Liu 2016260 HMSN N/A N HepG2 human 
liver

nude DOX 9 × 3 100 14

HMSNs-b-CD/
Ada-PEG

— — — — — — — 7

DOX — — — — — — — 51
HMSNs@DOX — — — — — — — 62
HMSNs-b-CD/Ada-
PEG@DOX

— — — — — — — 87

Meng 
2011200

NP3 N/A N/A KB-31 human 
cervical

nude DOX 3 × 4 15 –11

DOX — — — — — — — 70
DOX-NP3 — — — — — — — 85

Palanikumar 
2018261

PMSN N/A N/A SCC7 murine 
squamous cell

nude DOX 6 × 2 200 8

DOX — — — — — — — 12
DOX-BCP — — — — — — — 4
DOX-PMSN — — — — — — — 73

Qiao 2019262 HRN N/A N/A HepG2 human 
liver

nude DOX 1 × 5 40 –4

DOX — — — — — — — 58
DOX-HRN — — — — — — — 84

Ramaya 
2017263

Au@SiO2-CS-FA FA N/A EAC murine 
Ehrlich ascites 
carcinoma

Balb/c DOX 14 × 1 140 3

Au@SiO2-DOX-CS — — — — — — 150 26
Au@SiO2-DOX-CS-FA — — — — — — 140 71
DOX — — — — — — 140 44
Lipodox — — — — — — 140 53

Shao 2016264 M-MSN-PEG mag N H22 murine 
hepatic

ICR DOX 5 × 1 68 5

DOX — — — — — — — 94
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TABLE 8: (continued)
Study Group Target Ex stim Tumor Mouse Drug Dose  

(mg/kg)
Start TV 

(mm3)
%TIR

M-MSN-DOX-M- — — — — — — — 23
M-MSN-DOX-M + — — — — — — — 51

Shen 2019265 DOX N/A N/A SMMC-7721 
human liver

nude DOX 7 × 5 100 36

DOX-POMSN — — — — — — — 71
Si 2020266 MSN MUC-1 N/A MCF-7 human 

breast
nude DOX 7 × 5 80 3

DOX — — — — — — — 35
NAN — — — — — — — 28
SMRAN — — — — — — — 49

Tian 2016267 DOX Tf N A549- human 
alveolar 
carcinoma

Balb/c DOX 4 × 5 i.p. 100 44

DOX-HSMN-SH — — — — — — — 32
DOX-HSMN-s-s-Tf — — — — — — — 71

Turan 
2019202

TMZ CREKA RF GL261 murine 
glioma cranial

nude DOX 3 × 5 15 –30

TMZ (+RF) — — — — — — — 0
DOX (+RF) — — — — — — — 34
Fe@MSN -DOX(+RF) — — — — — — — –30
Targeted Fe@MSN-
DOX (–RF)

— — — — — — — 58

Targeted Fe@MSN-
DOX (+RF)

— — — — — — — 95

Turan 
2019203

DOX RF RGD/
CREKA

RF GL261 murine 
glioma cranial

nude DOX 3 × 2 5 0

RGD-NP no RF + DOX — — — — — 3 × 2 — –71
CREKA-NP no RF + 
DOX

— — — — — 3 × 5 — 59

CREKA-NP RF + DOX — — — — — 3 × 5 — 90
RGD-NP RF + DOX — — — — — 3 × 2 — 81
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TABLE 8: (continued)
RGD-NP + CREKA-NP 
RF + D

— — — — — 3 × 7 — 99

Wan 2020268 DOX N/A N/A 4T1 mouse 
epithelial breast

Balb/c DOX 1 × 5 100 37

DOX@MMSN-SS-PEI — — — — — — — 56
DOX@
MMSN-SS-PEI-cit

— — — — — — — 87

Wang 
2019269

DOX ICAM-1 N MDA-MB-231 nude DOX 3 × 10 NR 16

DOX@PMO-Cy5.5 — — — — — — — 27
DOX@
PMO-Cy5.5-ICAM

— — — — — — — 60

Wei 2017270 DOX peptide N/A HT-1357 human 
Bladder

nude DOX 4 × 10 80 48

DOX-MSN@PDA — — — — — — — 66
DOX-MS@PDA-PEP — — — — — — — 88

Xu 2013271 MSN@Gel N/A N/A HT-29 human 
colorectal

Balc/c 
nude

DOX 4 × 10 60 –5

DOX — — — — — — — 50
DOX-MSN — — — — — — — 67
DOX-MSN@Gel — — — — — — — 84

Yang 2017272 DOX N/A N/A MCF-7 human 
breast

nude DOX 5 × 1 25 38

PGSN-DOX — — — — — — — 43
Yang 2016273 DOX N/A N/A MCF-7/MDR 

human breast
nude DOX 5 × 5 57 33

DOX/HHS-MSN — — — — — — — 77
DOX/HH-MSN — — — — — — — 65
DOX/SHS-MSN — — — — — — — 53

Yang 2016204 HMS FA N HeLA human 
cervical

nude DOX 1 × 8 65 6

DOX — — — — — — — 46
HMS@FTD — — — — — — — 95
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TABLE 8: (continued)
Study Group Target Ex stim Tumor Mouse Drug Dose  

(mg/kg)
Start TV 

(mm3)
%TIR

Yang 2016273 DOX HA/CD44 N/A MCF-7/ADR nude DOX 5 × 5 50 33
DOX/SHS-MSN — — — — — — — 53
DOX/HH-MSN — — — — — — — 66
DOX/HHS-MSN — — — — — — — 78

You 2017274 DOX FA N/A CNE2 
nasopharyngeal

NR DOX 12 × 4 200 39

MSNR-DOX (2) — — — — — — — 45
MSNR-DOX (4) — — — — — — — 71

Zhang 
2017275

DOX N/A N/N MCF-7 nude DOX 3 × 7.5 200 26

DOX@
MONs-Cy5.5-PEG

— — — — — — — 49

DOX@
MONs-Cy5.5-PHLIP

— — — — — — — 81

Zhang 
2014276

DOX FA N/A MDA-MB-231 
human breast

nude DOX 3 × 1.5 7.5 12

DOX@PEG-MSNPs48-
CD-PEG

— — — — — — — 30

DOX@PEG-MSNPs48-
CD-PEG-FA

— — — — — — — 80

PEG-MSNPs72 — — — — — — — —
PEG-MSNPs100 — — — — — — — —

Zhoa 2018277 MSN + TPGS N/A N/A MCF-7/MDR 
human breast

SCID DOX 5 100 1

DOX — — — — — — — 15
DOX@MSN — — — — — — — 30
DOX@MSN-TPGS — — — — — — — 65

Zhoa 2016278 DOX N/A N/A HepG2 human 
liver

nude DOX 7 × 5 s.c. 100 40

DOX-substrate/SSLN — — — — — — — 73
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TABLE 8: (continued)
Zhou 2018279 HMSN Tf N/A MDA-MB-231 

human breast
nude DOX 7 × 1 110 3

DOX — — — — — — — 51
HMSN@DOX — — — — — — — 73
HMSN-S-S-Tf@DOX — — — — — — — 86

Zhu 2017280 SiO2@LDH VEGF 
(Avastin)

N/A SH-SY5Y nude DOX 7 × 5 150 16

DOX — — — — — — — 72
SiO2@LDH-DOX — — — — — — — 34
SiO2@LDH-Bev — — — — — — — 11
SiO2@LDH-Bev-DOX — — — — — — — 59
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TABLE 9: Tumor inhibition ratio for MSN formulations with DOX with TT, PDT, or RT
Study Group Target Ex stim Tumor Mouse Drug Dose  

(mg/kg)
Start TV 

(mm3)
%TIR

DOX + thermal therapy
Cao 2020281 DOX FA NIR H22 murine 

hepatic
Kunming DOX 1 × 5 400 15

DOX-HPC — — — — — — — 26
DOX-HPCF — — — — — — — 49
HPC + NIR — — — — — — — 39
HPCF + NIR — — — — — — — 64

Chai 2018282 DOX N/A NIR MDA-MB-231 nude DOX 3 × 7.5 100 12
PM@HMSNs + laser — — — — — — — 36
PM@HMSNs-DOX — — — — — — — 42
PM@HMSNs-DOX + 
laser

— — — — — — — 74

Chen 
2019283

DOX HA/CD44 NIR HeLA human 
cervical

nude DOX 1 × 3 100 25

MSNs-PDA — — — — — — — 50
MSNs-PDA-HA — — — — — — — 58
MSNs-PDA-HA + NIR — — — — — — — 92

Cheng 
2018284

DOX N/A NIR S10 muring 
sarcoma

nude DOX 9 × 5 100 25

YSPMO(DOX)@CuS — — — — — — — 58
YSPMO(DOX)@CuS + 
NIR

— — — — — — — 83

Fang 
2018285

DOX HA/CD44 NIR HeLA human 
cervical

nude DOX 3 × 5 100 23

HA-HMCN@GQDs + 
laser

— — — — — — — 47

HA-HMCN(DOX)@GQD — — — — — — — 52
HMCN(DOX)@GQDs + 
laser

— — — — — — — 73

HA-HMCN(DOX)@
GQDs + laser

— — — — — — — 86
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TABLE 9: (continued)
Feng 
2020286

Saline + NIR N/A NIR 4T1 mouse 
epithelial breast

Balb/c DOX 1 × 10 175 –7

DOX — — — — — — — 18
HMC-SS-Zno + NIR — — — — — — — 51
Dox/HMC-SS-ZnO — — — — — — — 45
Dox/HMC-SS-ZnO + NIR — — — — — — — 94

Gao 2018198 DOX FA AMF MCF-7 human 
breast

Balb/c DOX 12 × 1.5 NR 27

IOMSN@uIO(DOX) — — — — — — — 54
IOMSN@uIO(DOX)-FA — — — — — — — 82
IOMSN@uIO(DOX)-FA 
+ AMF

— — — — — — — 88

Jin 2018287 MSN-Fe-AuNP N/A NIR WHU-HN6- 
human 
squamous

nude DOX 1 × 10 100 22

DOX — — — — — — — 35
MSN-Fe-AuNP-DOX — — — — — — — 60
MSN-Fe-AuNP + NIR — — — — — — — 83
MSN-Fe-AuNP-DOX + 
NIR

— — — — — — — 93

Lei 2019288 MSN-SS-PDA/DOX N/A NIR 4T1 mouse 
epithelial breast

Balb/c DOX 5 × 10 125 23

MSN-SS-PDA + NIR — — — — — — — 23
DOX — — — — — — — 77
MSN-SS-PDA/DOX + 
NIR

— — — — — — — 91

Lei 2016289 I/D@MSN + NIR RGD NIR 4T1 mouse 
epithelial breast

Balb/c DOX;ICG 1 × (1.15; 
5)

100 93

ICG/DOX + NIR — — — — — — — 70
PBS + NIR — — — — — — — 14
I/D@MSN — — — — — — — 35
ICG/DOX — — — — — — — 22
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TABLE 9: (continued)
Study Group Target Ex stim Tumor Mouse Drug Dose  

(mg/kg)
Start TV 

(mm3)
%TIR

Li 2020290 DOX N/A NIR Saos-2 nude DOX; Cu 1 × (7.5; 
4.8)

100 32

CuS@BSA-HMONs + 
laser

— — — — — — — 46

CuS@BSA-HMONs-DOX — — — — — — — 65
CuS@BSA-HMONs-DOX 
+ laser

— — — — — — — 94

Li 2020206 NIR TAT-RhB NIR CT26 Balb/c 1 × 2 75 –8
DOX — — — — — — — 49
AuNR@SiO2/DOX + NIR — — — — — — — 60
AuNP@SiO2-TAT/DOX — — — — — — — 58
AuNR@SiO2-TAT-NIR — — — — — — — 81
AuNR@SiO2-TAT/DOX 
+ NIR

— — — — — — — 99

Li 2019207 PBS + NIRX1 RGD NIR HeLA human 
cervical

nude DOX 1 × 5.3 200 11

DOX — — — — — — — 44
Ag2S@M/D-P-RGD — — — — — — — 26
Ag2S@M-P-RGD + 
NIRX1

— — — — — — — 77

Ag2S@M/D-P-RGD + 
NIRX1

— — — — — — — 100

AG2S@M-P-RGD + 
NIRX3

— — — — — — — 86

Ag2S@M/D-P-RGD + 
NIRX3

— — — — — — — 99

Li 2018205 DOX + NIR Her-2 NIR SKBR-3 human 
breast

nude DOX 1 × 1.2 50 26

Tam-Bi2S3@mPS/DOX — — — — — — — 57
Bi2S3@mPS/DOX + NIR — — — — — — — 71
Tam-Bi2S3@mPS + NIR — — — — — — — 82
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TABLE 9: (continued)
Tam-Bi2S3@mPS/DOX + 
NIR

— — — — — — — 100

Lu 2018291 DOX + NIR RGD NIR UMR-106 rat 
osteosarcoma

nude DOX 1 × 2.5 110 2

RGD-Bi2S3@MSN/DOX — — — — — — — 38
Bi2S3@MSN/DOX + NIR — — — — — — — 68
RGD-Bi2S3@MSN + NIR — — — — — — — 88
RGD-Bi2S3@MSN/DOX 
+ NIR

— — — — — — — 95

Ren 2020193 DOX FA NIR H22 murine 
hepatic

Balb/c DOX 1 × 7.7 150 51

FMSN@BP — — — — — — — 1
— — — — — — — —

FMSN@BP-DOX — — — — — — — —
FMSN@BP-DOX-FA — — — — — — — —
FMSN@BP-FA + NIR — — — — — — — —
FMSN@BP-DOX + NIR — — — — — — — —
FMSN@BP-DOX-FA + 
NIR

— — — — — — — —

Wang 
2019292

DOX N/A NIR 4T1 mouse 
epithelial breast

Balb/c DOX 1 × 5 70 13

GNR@P-SiO2/DOX — — — — — — — 20
GNR@P-SiO2 + NIR — — — — — — — 53
GNR@P-SiO2/DOX + NIR — — — — — — — 73

Wang 
2018197

GNR/Ppy/m-SiO2 + Laser N/A NIR CT26 mounse 
colon

Balb/c DOX 1 × 5 100 97

GNR/Ppy/m-SiO2-DOX — — — — — — — 19
GNR/Ppy/m-SiO2-DOX + 
Laser

— — — — — — — 99

Wei 2018208 CuSNDs N/A MDA-MB-231 nude DOX; Cu NR NR 8
DOX — — — — — — — 23
MDN — — — — — — — 15
CuSNDs + NIR — — — — — — — 46
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TABLE 9: (continued)
Study Group Target Ex stim Tumor Mouse Drug Dose  

(mg/kg)
Start TV 

(mm3)
%TIR

MDN + NIR — — — — — — — 100
Wei 2018208 CuSNDs N/A — HepG2 human 

liver
nude DOX; Cu NR NR 44

DOX — — — — — — — 38
MDN — — — — — — — 31
CuSNDs + NIR — — — — — — — 44
MDN + NIR — — — — — — — 97

Yang 
2020293

Saline + NIR FA NIR HeLA human 
cervical

nude DOX 3 × 5 100 8

FaPCH — — — — — — — 3
FaPCH + NIR — — — — — — — 37
DOX — — — — — — — 42
FaPCHD — — — — — — — 65
FaPCHD + NIR — — — — — — — 95

Zhang 
2020209

NIR N/A NIR HeLa nude DOX 1 × 2 180 6

CuS@mSiO2 — — — — — — — 19
DOX — — — — — — — 40
CuS@mSiO2@MnO2 — — — — — — — 30
CuS@mSiO2@MnO2 + 
NIR

— — — — — — — 66

CuS@mSiO2@MnO2/DOX — — — — — — — 72
CuS@mSiO2@MnO2/DOX 
+ NIR

— — — — — — — 100

Zhong 
2020294

PBS + NIR N/A NIR H22 nude DOX 1 × 5 200 10

GNR@HPMO@PVMSN — — — — — — — 13
GNR@HPMO@PVMSN 
+ NIR

— — — — — — — 35

GNR@HPMO@
PVMSN–DOX

— — — — — — — 44
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TABLE 9: (continued)
GNR@HPMO@PVMSN–
DOX + NIR

— — — — — — — 88

DOX + radiation therapy
Wang 
2017302

FA-GSJNs FA N/A SMMC-7721 nude DOX 7 × 1 80 25

FA-GSJNs + RT — — — — — — — 75
DOX — — — — — — — 83
GSJNs-DOX — — — — — — — 67
FA-GSJNs-DOX — — — — — — — 83
GSJNs-DOX + RT — — — — — — — 94
FA-GDJMS-DOX + RT — — — — — — — 98

DOX + photodynamic therapy
Fang 
2019295

DOX N/A NIR HeLA human 
cervical

nude DOX; 
Ce6

1 × (2.7; 
3.3)

100 29

BMHDC — — — — — 1 × 2 — 43
HMSNs-DOX-Ce6 + laser — — — — — — — 71
BMHDC + laser — — — — — — — 86

Li 2018296 US RGD s 450 
nm + 

SMMC-7721 nude DOX; 
PpIX

1 × 2 100 3

DOX — — — — — — — 21
DOX@ 
HMONs-PpIX-PEG

— — — — — — — 44

DOX@ HMONs-PpIX-
PEG + US

— — — — — — — 72

DOX@HMONs-PpIX-
RGD + US

— — — — — — — 84

Liu 2017297 DOX Mag + 
Methotrexate

NIR HeLA human 
cervical

Balb/c nude 7 × 4 120 58

DOX/ZnPc-FMLM — — — — — — — 90
Rao 2018298 DOX N/A NIR SCC7 murine 

squamous cell
nude DOX; 

Ce6
1 × 5 150 18

R-MSN + NIR — — — — — — — 27
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TABLE 9: (continued)
Study Group Target Ex stim Tumor Mouse Drug Dose  

(mg/kg)
Start TV 

(mm3)
%TIR

DOX-MSN — — — — — — — 36
DOX-R-MSN + NIR — — — — — — — 55

Su 2017299 RMSN + laser N/A NIR 4T1 mouse 
epithelial breast

nude DOX; 
Ce6

8 × (5; 2.5) 100 10

DOX — — — — — — — 32
DOX/Ce6 + laser — — — — — — — 44
MSN-DOX/Ce6 + laser — — — — — — — 56
RMSN-Ce6 + laser — — — — — — — 65
RMSN-DOX — — — — — — — 72
RMSN-DOX/Ce6 + laser — — — — — — — 94

Wang 
2019300

DOX Mag NIR MCF-7/MDR 
human breast

nude DOX; 
Ce6

1 × 3 200 4

nanocompposite — — — — — — — 25
nanocomposite + — — — — — — — 38

Xu 2020301 DOX N/A US MDA-MB-231 nude DOX; 
Ce6

5 × (3; 10) 100 37

DOX + Ce6 + US — — — — — — — 56
MSN-DOX-Ce6 + US — — — — — — — 76
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TABLE 10: TIR for MSN formulations combination of DOX with other chemotherapy
Study Group Targeting Ext stim Tumor Mouse Drug Dose  

(mg/kg)
TV at 
start

%TIR

Chen 
2016303

DOX N/A N/A Hep3B CSCs nude DOX; shRNA 15 × 1 mg NP NR 20

MSN/DOX — — — — — — — 34
MSN-SS-PEI/
DOX

— — — — — — — 45

MSN-SS-PEI/
DOX/shCrtl

— — — — — — — 61

MSN-SS-
PEI/DOX/
shABCG2

— — — — — — — 84

Ding 
2020304

DOX GRP78P pH; H2O2 4T1 Balb/c DOX; α-TOS 1 × 5 DOX 100 68

DOX/α-TOS 
loaded HMSNs

— — — — — — — 31

DOX/α-TOS 
loaded HMSN-
NH2-CMCH-
GRP78P

— — — — — — — 58

DOX/α-TOS 
loaded HMSN-
NH2-CMCH-
GRP78P

— — — — — — — 51

DOX/α-TOS 
loaded HMSN-
TK-CMCH

— — — — — — — 44

DOX/α-TOS 
loaded HMSN-
TKCMCH-
GRP78P

— — — — — — — 80

Fang 
201865

Q + D HA/CD44 N/A SGC-7901/ADR 
human gastric

nude DOX; 
Quercetin

7 × (5; 5) 100 44

HA-SiLN/D — — — — — — — 45
HA-SiLN/Q — — — — — — — 31
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TABLE 10: (continued)
Study Group Targeting Ext stim Tumor Mouse Drug Dose  

(mg/kg)
TV at 
start

%TIR

HA-SiLN/QD — — — — — — — 74
He 2020305 DOX/SP-FS-

USMNS cluster
N/A HepG2 nude DOX; 

Curcumin
5 × 1 90 49

Cur-SOX/SP-
FS-USMSN 
cluster

— — — — — — — 56

He 2016306 (E + D) N/A N/A LLC (Lewis 
lung carcinoma)

C57BL/6 DOX; 
erlotinib

5 × (2; 0.77) NR 29

M-SPC-L(E 
+ D)

— — — — — — — 34

M-HHG2C18-
L(D)

— — — — — — — 13

M-HHG2C18-
L(D) + E

— — — — — — — 11

M-HHG2C18-
L(E + D)

— — — — — — — 77

Hu 2017307 D@RSMSN N/A N/A MCF-7 human 
breast

nude DOX; α-TOS 3 × (5; 2.5) 100 23

DOX — — — — — — — 54
T/D@RSMSN — — — — — — — 85

Kankala 
2020308

DOX MCF-7/ADR 
human breast

nude DOX; 
Platinum

7 × NR 100 37

Zn-MSN — — — — — — — 1
Zn-MSN-DOX — — — — — — — 59
Zn-MSN@
CS/Pt

— — — — — — — 0

Zn-MSN-
DOX@CS/Pt

— — — — — — — 69

Kong 
2017309

DOX N/A N/A B16F10 murine 
melanoma

C67/BL6 DOX; Il2; 
ATRA

3 × (5; 2; 15) 30 17

D/I — — — — — — — 37
A/D — — — — — — — 47
A/D/I — — — — — — — 52
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TABLE 10: (continued)
D-dHMLB — — — — — — — 43
D/I-dHMLB — — — — — — — 59
A/D-dHMLB — — — — — — — 62
A/D/I-dHMLB — — — — — — — 85

Li 2018210 QD@M-DNA/
FA

FA NIR HeLA human 
cervical

nude DOX; 
db-DNA

5 × (1.5; 0.2) 200 44

QD@M-DNA/
FA + NIR

— — — — — — — 58

QD@M/D-
Avidin/FA + 
NIR

— — — — — — — 75

QD@M/D-
DNA/FA + 
NIR

— — — — — — — 96

Li 2017211 SL-IDMSN N/A N/A H22 murine 
hepatic

Kunming DOX; 
iSur-pDNA

9 × (4; 1) 130 21

DOX — — — — — — — 52
SL-IDMSN/
pDNA

— — — — — — — 63

SL-IDMSN@
DOX/pGL

— — — — — — — 78

DMSN@DOX/
pDNA

— — — — — — — 87

SL-IDMSN@
DOX/pDNA

— — — — — — — 97

Liu 2018310 TMSN peptide (WIFP N/A SW480 human 
colorectal

nude DOX; 
miRNA-145

5 × 3 mg/kg; 
75 nmol/kg

NR 3

m@TMSN — — — — — — — 61
D@TMSN — — — — — — — 48
Dm@MSN — — — — — — — 43
Dm@TMSN — — — — — — — 86

Nie 2020212 CCM-DOX-
MPH

N/A N/A MCF-7 human 
breast

nude DOX; MPH 6 × (5; 4) 150 71
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TABLE 10: (continued)
Study Group Targeting Ext stim Tumor Mouse Drug Dose  

(mg/kg)
TV at 
start

%TIR

CCM@LM-
DOX-MPH

— — — — — 6 × (1; 0.78) — 95

L@LM-DOX-
MPH

— — — — — — — 86

LM-DOX-
MPH

— — — — — — — 89

Doxil — — — — — 6 × 5 — 87
CCM-DOX — — — — — — — 34
L@LM-DOX — — — — — — — 47
LM-DOX — — — — — — — 63
CCM@
LM-DOX

— — — — — — — 71

Ramasamy 
2018311

DOX N/A NIR MDA-MB-231 Balc/c nude DOX; Se 4 × 5 DOX 90 26

Nano Se — — — — — — — 41
Au@mSiO2/
DOX (NIR-)

— — — — — — — 51

Au@mSiO2/
DOX (NIR + )

— — — — — — — 55

Se@Au@
mSiO2/DOX 
(NIR-)

— — — — — — — 67

Se@Au@
mSiO2/DOX 
(NIR+)

— — — — — — — 79

Su 2014312 RIV-L[C] EGF (RIV) N/A A375 human 
melanoma

nude DOX; CA-4 6 × (0.8; 25) 75 57

RIV-L[D] — — — — — — — 55
RIV-L[D] + 
RIV-L[C]

— — — — — — — 75

l[CD] — — — — — — — 71
RIV-L[CD] — — — — — — — 90
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TABLE 10: (continued)
Wang 
201864

Se@
SiO2-FA-CuS

FA NIR HeLA human 
cervical

nude DOX; Se 1;3.5 25 10

DOX — — — — — — — 28
Se@SiO2-
FA-CuS/
DOX

— — — — — — — 48

Se@SiO2-FA-
CuS + NIR

— — — — — — — 76

Se@SiO2-FA-
CuS/DOX + 
NIR

— — — — — — — 100

Xie 2020313 N9 N9 peptide N/A HepG2-Bcl2-
GFP

nude DOX; N9 7 × (0.5; 1.75) 80 3

DOX — — — — — — — 16
— — — — — — —

N9 + DOX — — — — — — — 17
M~G5 — — — — — — — 1
N9@M~G5 — — — — — — — 84
N9@
M~G5~DOX

— — — — — — — 88

Xing 
2020213

DOX N/A NIR LLC (Lewis 
lung carcinoma)

C57BL/6 DOX; PTX 5 × (4; 0.28) 80 35

PTX — — — — — — — 49
Au-MSN JNP — — — — — — — 0
Au-MSN JNP 
+ NIR

— — — — — — — 46

Au-MSN-DOX 
JNP

— — — — — — — 37

PTX-Au-MSN 
JNP

— — — — — — — 13

PTX-Au-MSN-
DOX JNP

— — — — — — — 60

placebo — — — — — — — —
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TABLE 10: (continued)
Study Group Targeting Ext stim Tumor Mouse Drug Dose  

(mg/kg)
TV at 
start

%TIR

Xue 2017314 LH/miR-375 N/A N/A HepG2/ADR 
human liver

nude DOX; 
miR-375

3 × 6 mg/kg;  
3 × 4 nmol/kg

75 19

DOX — — — — — — — 20
LHD — — — — — — — 29
LHD/miR-375 — — — — — — — 55

Yin 2018315 MSNP-DOX iRGD N/A MDA-MB-231 nude DOX; let-7a 
mRNA

12 × (0.6; 
0.129)

100 17

MSP/Let-7a — — — — — — — 61
MSNP-DOX/
Let-7a

— — — — — — — 88

Zhang 
2019316

MSN HA/CD44 N/A H22 murine 
hepatic

ICR DOX; 
berberine

3 × (1; 2) 250 3

DOX — — — — — — — 46
DOX + BER — — — — — — — 75
MSN@DB — — — — — — — 55
HA-MSN@DB — — — — — — — 81

Zhang 
2014317

MSN Aptamer N/A HepG2 human 
liver

nude DOX; CytC 9 × 3 DOX 38 4

MSN-CtyC-Apt — — — — — — — 21
DOX — — — — — — — 49
MSN@DOX — — — — — — — 71
MSN-CtyC-
Apt@DOX

— — — — — — — 87

Zhao 
2017214

DOX N/A N/A MCF-7 SCID DOX; siRNA 8 × 1.2 DOX 50 71

MSN@DOX — — — — — — — 83
MSN-SS-
siRNA@DOX

— — — — — — — 96
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TABLE 11: TIR for MSN formulations combination of drugs other than DOX

Study Group Targeting Ext stim Tumor Mouse Drug Dose  
(mg/kg)

Start 
TV 

(mm3)

%TIR

Ansari 
2018318

MMSN Mag N/A C-26 murine 
colorectal

nude EPI 1 × 9 20 0

MMSN + 
EPI(MAG-)

— — — — — — — 22

EPI — — — — — — — 37
MSMN + 
EPI(MAG + )

— — — — — — — 48

MMSN + 
EPI(MAG-)

— — — — — — — 32

EPI — — — — — 1 × 12 — 45
MSMN + 
EPI(MAG + )

— — — — — — — 59

Babaei 
2020319

Camptothecin AS1411 DNA 
aptamer

N/A C-26 murine 
colorectal

Balb/c CPT; iSur 
shRNA

4 × (3; 2) 20 23

PEG@MSNR/Sur — — — — — — — 28
PEG@MSNR-CPT — — — — — — — 40
PEG@
MSNR-CPT-Sur

— — — — — — — 56

Apt-PEG@
MSNR-CPT/Sur

— — — — — — — 85

Che 
2015320

Taxol Mag N/A S180 mouse 
sarcoma

Kunming PTX 3 × 10 200 41

PTX/MMSN@
GEL-04 (MF)

— — — — — — — 49

PTX/MMSN@
GEL-04 (MF + )

— — — — — — — 79

Chen 
2020321

PTX N/A N/A 4T1 mouse 
epithelial 

breast

Balb/c PTX 1 × 5 100 15

HMONs-PTX — — — — — — — 29
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TABLE 11: (continued)

Study Group Targeting Ext stim Tumor Mouse Drug Dose  
(mg/kg)

Start 
TV 

(mm3)

%TIR

HMONs-PTX@
PDA

— — — — — — — 57

HMONs-PTX@
PDA-PEG

— — — — — — — 23

PTX liposome — — — — — — — 77
Chen 
2019322

5-FU N/A N/A Cal33 murine 
squamous cell

Balb/c 5-FU; ß-lap 3 × (5; 25) 90 12

ß-lap — — — — — — — 8
5-FU + ß-lap — — — — — — — 18
FNQ-MSN — — — — — — — 58

Choi 
2016323

AXT N/A N/A SCC7 mouse 
squamous cell

Balb/c axitinib; 
celastrol

7 × 1 NP 65 42

CST — — — — — — — 61
AXT/CST — — — — — — — 72
ACML — — — — — — — 80

Ding 
2015324

CMS peptide N/A MCF-7 human 
breast

nude EGCG 5 × 100 50 48

EGCG — — — — — — — 72
CMS@EGCG — — — — — — — 82
CMS@peptide@
EGCG

— — — — — — — 90

Du 2019325 Taxol HA/CD44 N/A HepG2 human 
liver

Kunming PTX; Gox 7 × 7.5 
PTX

120 33

MSN — — — — — — — 38
MSN-Gox — — — — — — — 81
MSN-Gox/PLL/HA — — — — — — — 90

Fei 2017326 ATO-sol RGD N/A H22 murine 
hepatic

ICR ATO 15 × 1 50 36

CHMSN-ATO — — — — — — — 52
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TABLE 11: (continued)

LP-CHMSN-ATO — — — — — — — 65
RGD-LP-CHMSN-
ATO

— — — — — — — 82

Feng 
2019327

taxol N/A N/A EMT6 murine 
mammary

nude EVO; Ber 9 × 2 (EVO 
+ BBR)

150 91

BMEL(6:1) — — — — — — — 87
BMEL(1:6) — — — — — — — 83
Free EVO/
BBR(6:1)

— — — — — — — 47

Free EVO/
BBR(1:6)

— — — — — — — 30

Gao 
2019328

Tax-Cur-PLMSN iv N/A N/A 4T1 mouse 
epithelial 

breast

nude PTX/Cur 1 × (6; 36) 150 57

Tax-Cur-PLMSN pi — — — — — — — 58
Tax — — — — — — — 2
Tax-cur — — — — — — — 23
PLMSN — — — — — — — 7

Goto 
2017329

GEM-S-MSN@
PICsome

N/A N/A A549 human 
alveolar

nude GEM 3 × 5 8.7 61

S-MSN@PICsome — — — — — — — 1
GEM-S-MSN — — — — — — — –5
S-MSN — — — — — — — –19
PICsome — — — — — — — 12
GEM — — — — — — — 92

Hanafi-
Bojd 
2015330

MSN-Ph2 N/A N/A C-26 murine 
colorectal

Balb/c EPI 3 × 9 NR 9

MSN-Ph2-EPI — — — — — — — 17
EPI — — — — — — — 46
MSN-PEI-PEG-EPI — — — — — — — 64
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TABLE 11: (continued)

Study Group Targeting Ext stim Tumor Mouse Drug Dose  
(mg/kg)

Start 
TV 

(mm3)

%TIR

Hanafi-
Bojd 
2016331

EPI N/A N/A C-26 murine 
colorectal

Balb/c EPI; siRNA 1 × (9; 1.2) 10 17

siRNA — — — — — — — 2
MSN-PEI-PEG-
EPI-siRNA

— — — — — — — 62

MSN-PEI-PEG-EPI — — — — — — — 41
MSN-PEI-PEG-
siRNA

— — — — — — — 17

MSN-PEI-PEG-
EPI-scramble 
siRNA

— — — — — — — 22

Hu 2019332 miR21 N/A N/A BGC823 
human gastric

nude RSV; 
anti-miR1

1 × (10; 
0.45)

90 10

RSV — — — — — — — 17
RSVmirNP — — — — — — — 38
HA/RSVmirNP — — — — — — — 66

Hu 2019356 Laser AE105-peptide NIR HeLA human 
cervical

nude cisPT NR 150 9

NP every day — — — — — — — 24
NP + laser every 
other day

— — — — — — — 65

NP + laser one time — — — — — — — 80
Huang 
2020355

RT N/A N/A 4T1 mouse 
epithelial 

breast

NR QC 1 × 5 200 24

RT + Q — — — — — — — 57
CQM — — — — — — — 29
RT + CQM — — — — — — — 87
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TABLE 11: (continued)

Huo 
2017333

GFD NC 5 N/A N/A 4T1 mouse 
epithelial 

breast

nude Gox; Fe3O4 1 × 5 GOx 20 71

GFD NC 10 — — — — — 1 × 10 GOx — 86
GFD NC 5 N/A U87 human 

glioblastoma
nude Gox; Fe3O4 1 × 5 GOx 20 40

GFD NC 10 — — — — — 1 × 10 GOx — 80
Ke 2018334 DiR-labeled sora@

HMSNs
transferring Tf N/A TPC-1 human 

thyroid
SCID sorafenib 1 × 9 NP 65 25

DiR-labeled sora@
Tf-HMSNs

— — — — — — — 55

Kundo 
2020335

umbelliferone FA N/A Ehrlich ascites Swiss 
albino

umbelliferone/
coumarin

7 × 10 160 22

Umbe@MSN-PAA — — — — — — — 46
Umbe@
MSN-PAA-FA

— — — — — — — 64

Liu 2020370 QC chondroitin 
sulfate

N/A MCF-7 human 
breast

nude PTX/QC 7 × (5; 5.1) 100 17

MSNs-ChS@QC — — — — — — — 15
PTX — — — — — — — 23
MSN-ChS@{TX — — — — — — — 34
PQ — — — — — — — 44
MSNs@PQ — — — — — — — 61
MSNs-Chs@PQ — — — — — — — 74

Li 2020336 TanIIA FA N/A NB4 human 
leukemia

nude PTX; TanIIA 6 × 5 Ptx 50 48

Ptx — — — — — — — 66
Ptx + TanIIA — — — — — — — 79
TanIIA@
FA-LB-MSN

— — — — — — — 70

Ptx@FA-LB-MSN — — — — — — — 77
(Ptx + TanIIA)@
MSN

— — — — — — — 82
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TABLE 11: (continued)

Study Group Targeting Ext stim Tumor Mouse Drug Dose  
(mg/kg)

Start 
TV 

(mm3)

%TIR

(Ptx + TanIIA)@
LB-MSN

— — — — — — — 91

(Ptx + TanIIA)@
FA-LB-MSN

— — — — — — — 94

Li 2020217 CPT-11@
GDC-MSN

asialoglycoprotein N/A Huh-7 human 
liver

nude Ir 7 × 10 50 98

CPT-11@GP-MSN — — — — — 7 × 10 — 79
CPT-11@
PDC-MSN

— — — — — 7 × 10 — 91

CPT 100 — — — — — 7 × 100 — 74
CPT 10 — — — — — 7 × 10 — 27

Li 2019337 Fe3O4@
PMO-NH2-Los

N/A N/A DSL/6A rat 
pancreas

Balb/c GEM various 60 6

Fe3O4@PMO-GEM — — — — — 7 × 40 los 
1st d7

— 31

Fe3O4@PMO-
GEM + Fe3O4@
PMO-NH2-Los

— — — — — 3 × 10 GEM 
starting d8

— 69

Li 2019357 MB FA NIR HeLA human 
cervical

nude Pt; MB 1 × 0.0075 
MB

100 11

MB-MSNS — — — — — — — 35
FA/PtBSA@
MB-MSNS

— — — — — — — 88

Li 2019218 Ber FA NIR SMMC-7721 
human liver

nude Ber 7 × 5 90 4

FA-JGMSN-Ber — — — — — — — 38
RT — — — — — — — 45
FA-JGMSN + RT — — — — — — — 65
FA-JGMSN-Ber 
+ RT

— — — — — — — 79
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TABLE 11: (continued)

JGMSN-Ber + RT 
+ NIR

— — — — — — — 88

FA-JGMSN-Ber + 
RT + NIR

— — — — — — — 95

Liu 2020338 DM-NCTD FA N/A H22 murine 
hepatic

NR DM-NCTD; 
ABT-737

1 × 2 
DM-NCTD

NR 35

ABT-737 — — — — — — — 21
DM-NCTD + 
ABD-737

— — — — — — — 46

LA-LB(ABT-737)-
(DM-NCTD@
CHMSN)

— — — — — — — 70

Liu 2019149 IRIN N/A N/A MC38 murine 
colorectal 

(orthotopic)

C57BL/6 Ir 4 × 40 NR* 8

Onivydne — — — — — — — 17
IR-silicaosome — — — — — — — 58

Liu 2018339 PAMAM-Pt N/A N/A A549 human 
alveolar

nude cisPT 9 × 2 100 14

GEM — — — — — — — 28
HMSN@
GEM-CS(SA)/
PAMAM-PT

— — — — — — — 46

HMSN@GEM-
CS(DMA)/
PAMAM-PT

— — — — — — — 72

Liu 2012216 pGSN-NIR Tf NIR MCF-7 human 
breast

nude Doc 1 × 20 200 16

Taxotere — — — — — — — 62
pGSN-Doc-NIR — — — — — — — 84
pGSN-Doc-Tf-NIR — — — — — — — 99

Lu 2010340 CPT FA N/A MCF-7 human 
breast

nude CPT 15 × 5 ip 15 14

FMSN — — — — — — — 6
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TABLE 11: (continued)

Study Group Targeting Ext stim Tumor Mouse Drug Dose  
(mg/kg)

Start 
TV 

(mm3)

%TIR

FMSN/CPT — — — — — — — 99
F-FMSN/CPT — — — — — — — 100

Luo 
2016358

MMSGNR-AIPcS4 
NT

lactobionic acid NIR HepG2 human 
liver

nude cisPT; AIPcS4 1 × (1.9; 
1.15)

100 7

MMSGNR-AIPcS4 
NT 808 + 660 nm

— — — — — — — 52

MMSGNR-AIPcS4 — — — — — — — 10
MMSGNR-AIPcS4 
808 nm

— — — — — — — 79

MMSGNR-AIPcS4 
660 nm

— — — — — — — 72

MMSGNR-AIPcS4 
880 + 660 nm

— — — — — — — 93

Meng 
2015341

GEM N/A N/A KB-31 
HeLa human 

carcinoma

nude GEM 6 × 100 20 59

Abraxane — — — — PTX 6 × 10 — 33
GEM LB-MSNP — — — — GEM 6 × 100 

GEM
— 74

PTX/GEM 
LB-MSNP

— — — — GEM; PTX 6 × (100; 
10)

— 84

GEM/Abraxane 
(1x)

— — — — GEM; PTX 6 × (100; 
10)

— 57

GEM/Abraxane 
(12x)

— — — — GEM; PTX 6 × (100; 
120)

— 79

Mu 2017342 MSN-PLH-PEG N/A N/A H22 murine 
hepatic

Kunming sorafenib 6 × 10 120 28

SF-oral — — — — — — — 58
SF iv — — — — — — — 75
SF/MSN — — — — — — — 85
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TABLE 11: (continued)

SF/MSN-PLH-PEG — — — — — — — 90
Murugan 
2017343

TPT RGD/TAT N/A MDA-MB-231 
human breast

nude Topotecan/
metformin

8 × 5 NP 200 33

MP — — — — — — — 20
TPT + MT — — — — — — — 50
TPT + MSN-TAT — — — — — — — 61
TPT-MSN-TAT-
CAH-MT

— — — — — — — 70

PMS 
nanocomposites

— — — — — — — 92

Pan 2017344 MSN-P(OMEGA-
ci0RGD)

RGD N/A HTC-116 
human 

colorectal

nude 5-FU 6 × 20 100 0

5-FU — — — — — — — 50
5-FU@MSN — — — — — — — 63
5-FU@MSN-RGD — — — — — — — 74

Paredes 
2020345

MSN-AP-Sn-AX FA N/A MDA-MB-231 
human breast

NOD 
Scid

MSN-AP-Sn NR NR 2

MSN-AP-Sn-AX — — — — — — — 6
MSN-AP-FA-PEP-
Sn-AX

— — — — — — — 41

Qu 2018346 TPT FA N/A Y79 human 
retinoblastoma

nude topotecan NR 76 24

TMN — — — — — — — 38
FTMN — — — — — — — 67

Ren 
2018347

CPT N/A N/A Panc-1 human 
pancreatic

NR CPT NR 37

MnOx-SPION@
MSN@CPT

— — — — — 6 × 2.5 — 81

Shao 
2020219

PDA@hm N/A NIR HepG2 human 
liver

Balb/c Chloroquine; 
GOx

NR 100 –7

PDA@hm@CQ — — — — — — — 39
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TABLE 11: (continued)

Study Group Targeting Ext stim Tumor Mouse Drug Dose  
(mg/kg)

Start 
TV 

(mm3)

%TIR

PDA@hm@GOx — — — — — — — 44
PDA@hm + NIR — — — — — — — 60
PDA@hm@CQ + 
NIR

— — — — — — — 85

PDA@hm@Dox 
+ NIR

— — — — — — — 73

PDA@hm@CQ@
Gox + NIR

— — — — — — — 98

Sun 2019220 Au@MSN-ZOL N/A NIR MDA-MB231 
human breast

nude Zoledronate 4 × 0.2 NR 63

Au@MSN-ZOL + 
NIR

— — — — — — — 95

Tang 
2013348

Cpt50 N/A mouse Lewis 
lung carcinoma

C57BL/6 CPT 1 × 25 300 63

Cpt200 — — — — — — — 23
Tao 2019349 ATO-sol angiopep-2 

peptide
N/A C6 rat glioma 

(intra cranial)
rat ATO 8 × 1 NR 28

MSN@ATO — — — — — — — 34
PAA-MSN@ATO — — — — — — — 53
LP-PAA-MSN@
ATO

— — — — — — — 57

ANG-LP-PAA-
MSN@ATO

— — — — — — — 76

Thapa 
2017222

BIR Cyclosporine A NIR PANC-1 
human 

pancreas

nude bortezomib NR 100 53

BIR + NIR — — — — — — — 68
LMSN/BIR — — — — — — — 85
LMSN/BIR + NIR — — — — — — — 84
CLSMN/BIR — — — — — — — 89
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TABLE 11: (continued)

CLMSN/BIR + 
NIR

— — — — — — — 97

Wang 
2020359

Ir CCM NIR C-26 murine 
colorectal

Balb/c Ir 1 × 30 150 36

IR825/Ir ZGGO@
SiO2

— — — — — — — 43

IR825/Ir ZGGO@
SiO2@CM

— — — — — — — 40

IR825/Ir ZGGO@
SiO2@MM

— — — — — — — 52

IR825/Ir ZGGO@
SiO2@CMM

— — — — — — — 65

Ir + NIR — — — — — — — 42
IR825/Ir ZGGO@
SiO2 + NIR

— — — — — — — 53

IR825/Ir ZGGO@
SiO2@CM + NIR

— — — — — — — 56

IR825/Ir ZGGO@
SiO2@CMM + NIR

— — — — — — — 66

IR825/Ir ZGGO@
SiO2@CMM + NIR

— — — — — — — 83

Wang 
2019360

FA-GT-MSN FA NIR SMMC-7721 
human liver

nude tirapazamine 
TPZ

1 × 0.5 80 8

RT — — — — — — — 35
FA-GT-MSN + RT — — — — — — — 56
FA-GT-MSN + 
NIR + RT

— — — — — — — 40

FA + GT-MSN@
TPZ + NIR + RT

— — — — — — — 73

FA-GT-MSN@TPZ 
+ NIR + RT

— — — — — — — 92

GT-MSN@TPZ + 
NIR + RT

— — — — — — — 83
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TABLE 11: (continued)

Study Group Targeting Ext stim Tumor Mouse Drug Dose  
(mg/kg)

Start 
TV 

(mm3)

%TIR

Wang 
2017350

Cisplatin lactobionic acid N/A H22 murine 
hepatic

Kunming Pt 3 × 2 75 84

MSN-P-Pt — — — — — — — 74
MSN-P/LA-Pt — — — — — — — 88

Wu 2020351 HMSNs (H) N/A N/A PC-3 human 
prostate

nude CaO2 1 × 8 100 2

HMSNs-PAA (HP), — — — — — — — 4
CaO2 (C), — — — — — — — 12
CaO2@HMSNs 
(CH)

— — — — — — — 41

CaO2@HMSNs-
PAA (CHP)

— — — — — — — 78

Wu 2019221 PTX/GEM 
LB-MSNP

N/A NIR/
ultrasound

MDA-MB-231 nude ICG; PTX 1 × (5; 4) 100 24

ICG + NIR — — — — — — — 43
ICG/PFP@
HMOP-PEG

— — — — — — — 66

ICG/PFP@HMOP-
PEG + NIR

— — — — — — — 100

Xing 
2018361

Janus M-MSN Mag ACMF HepG2 human 
liver

nude Cur 7 × 5 80 1

Cur — — — — — — — 29
Janus 
M-MSNs-Cur

— — — — — — — 61

Janus M-MSNs-
Cur + ACMF

— — — — — — — 78

Janus M-MSNs-
Cur + ACMF + 
EMF

— — — — — — — 88

Xu 2017352 PTX FA N/A SMMC-7721 
human liver

nude PTX 6 × 20 300 30
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TABLE 11: (continued)

MSN-PTX — — — — — — — 57
FA-PEG-MSN-PTX — — — — — — — 70

Zhang 
2020353

MON N/A N/A A549 human 
alveolar

nude cisPT; 
acriflavine

1 × 4 × 2 
cisPt

150 4

MONA — — — — — — — 29
PMON — — — — — — — 66
PMONA — — — — — — — 92

Zhang 
2019362

CM EGFR NIR PC-9 human 
lung

nude erlotinib; ICG 3 × 0.0025 
Er

75 24

Er — — — — — — — 54
CMI — — — — — — — 39
CMI + NIR — — — — — — — 71
ECM — — — — — — — 64
ECM + NIR — — — — — — — 72
ECMI — — — — — — — 77
ECMI + NIR — — — — — — — 86

Zhao 
2017354

GEM Transferrin NIR PaCa-2 human 
pancreas

nude GEM 1 × 2 100 19

GNRS — — — — — — — 32
GNRS-GEM — — — — — — — 60
Tf-GNRS-GEM — — — — — — — 93

Zhao 
2017371

UA lactobionic acid N/A H22 murine 
hepatic

Kunming SO; UA 10 × 20.5 NR 26

SO — — — — — 10 × 9.5 — 39
UA + SO — — — — — 10 × (20.5; 

9.5)
— 57

USMN-CL — — — — — 10 × (20.5; 
9.5)

— 73

PDT only
Brezániová 
2018363

Foscan N/A NIR MDA-MB-231 nude temoporfin 1 × 0.8 250 29

T-SiNP3 — — — — — — — 60
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TABLE 11: (continued)

Study Group Targeting Ext stim Tumor Mouse Drug Dose  
(mg/kg)

Start 
TV 

(mm3)

%TIR

Du 2020364 CMHP N/A NIR 4T1 mouse 
epithelial 

breast

nude Ce6; MnOx 1 × 2 Ce6 50 3

CHP + Laser — — — — — — — 26
CMHP + Laser — — — — — — — 98

Ma 2018148 Ru@MSN-20 N/A NIR HepG2 human 
liver

nude RuPOP 1 × 0.2 140 46

Ru@MSN-40 — — — — — — — 43
Ru@MSN-80 — — — — — — — 38
RuPOP — — — — — — — 13

PTT only
Yang 
2019365

MSNR@Au-
TPPS4(Gd) +  
660 nm

N/A NIR 4T1 mouse 
epithelial 

breast

Balb/c TPPS4 1 × 15 100 13

MSNR@Au-
TPPS4(Gd) +  
808 nm

— — — — — — — 29

MSNR@Au-
TPPS4(Gd) + 
808/660 nm

— — — — — — — 95

Zhang 
2020366

Cu2-xSe N/A NIR MGC-803 
gastric

rat Cu2-xSe NR 87 65

  Cu2-xSe@mSiO2 — — — — — — — 66
  Cu2-xSe@mSiO2 

+ NIR
— — — — — — — 100

PDT and TT (no chemo)
Liu 2018367 ICG N/A NIR MCF-7 human 

breast
nude ICG 9 × 1.2 100 25

AuNR@MSN-ICG — — — — — — — 58
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TABLE 11: (continued)

AuNR@
MSN-RLA/
CS(DMA)-PEG

— — — — — — — 64

AuNR@MSN-
ICG-RLA/
CS(DMA)-PEG

— — — — — — — 85

Wang 
2019368

α-CTLA-4 Cancer Cell 
Membrane

Mag 4T1 mouse 
epithelial 

breast

Balb/c Ce6 5 × 12.5 
NP

80 4

CM@M-MON@
Ce6 + Laser + 
ACMF

— — — — — — — 73

CM@M-MON@
Ce6 + Laser + 
α-CTLA-4

— — — — — — — 88

CM@M-MON@
Ce6 + ACMF + 
α-CTLA-4

— — — — — — — 28

CM@M-MON@
Ce6 + Laser + 
ACMF + α-CTLA-4

— — — — — — — 32

Zhang 
2020369

PDT FA NIR 4T1 mouse 
epithelial 

breast

Balb/c Ce6; CuS 1 × 10 NP 200 38

Enhanced PDT — — — — — — — 59
PTT — — — — — — — 80
Enhanced PDT + 
PTT

— — — — — — — 98

*In this study, tumor volume at the start of treatment was not reported. 1.5–3 mm tumor “chunks” were surgically implanted into the cecum and therapy started 12 days 
later.
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TABLE 12: TIR for pegylated liposomal DOX and Abraxane (tumor volume at the start of the therapy was not reported in all studies)
Study Group Tumor Mouse Drug TV at start 

(mm3)
TIR

Liposomes
Brouckaert 
2004155

DOX 1 × 4.5 mg/kg + 4 × 1 mg/kg B16BL6 murine 
melanoma

C57BL/6 DOX 500 7

Doxil 1 × 4.5 mg/kg + 4 × 1 mg/kg — — — — 34
Colbern 1999151 DOX 3 × 9 mg/kg Lewis Lung B6C3-F1 DOX 850 60

DOXIL 3 × 4 mg/kg — — — — 86
DOXIL 3 × 9 mg/kg — — — — 93

Colbern 1999151 DOX 9 mg/kg Lewis Lung B6C3-F1 DOX — 38
DOXIL 4 mg/kg — — — — 69

Colbern 1999151 DOX 9 mg/kg — — — — 47
DOXIL 4 mg/kg — — — — 96

Colbern 1999151 DOX 3 × 9 mg/kg C26 murine 
colorectal 

Balb/c DOX 245 50

PL-DOX 3 × 4 mg/kg — — — — 78
PL-DOX 3 × 9 mg/kg — — — — 95

Gabizon 2002372 DOX 2.5 mg/kg M109 Balb/c — — –7
DOX 10 mg/kg — — — — 29
DOXIL 2.5 mg/kg — — — — 55
DOXIL 10 mg/kg — — — — 83

Huang 1992373 DOX 3 × 6 mg/kg — — DOX 8 18
SL-DOX 3 × 6 mg/kg — — — — 100
SL-DOX 3 × 9 mg/kg — — — — 100
EPI 3 × 6 mg/kg — — — — 42
SL-EPI 3 × 6 mg/kg — — EPI — 100
SL-EPI 3 × 9 mg/kg — — — — 100

Mayer 1990374 DOX 3.25 mg/kg SC115 mouse 
breast

NR DOX (palpable) 8

DOX 6.5 mg/kg — — — — 76
Lipodox 3.2 mg/kg — — — — 42
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TABLE 12: (continued)
Lipodox 6.5 mg/kg — — — — 89
Lipodox 13 mg/kg — — — — 89

Mayhew 1992375 L-EPI 3 × 6 mg/kg C26 murine 
colorectal

Balb/c EPI — 41

L-EPI 3 × 9 mg/kg — — — — 20
S-EPI 3 × 6 mg/kg — — — — 100
S-EPI 3 × 9 mg/kg — — — — 100

Papahadjopoulos 
1991376

EPI 6 mg/kg C26 murine 
colorectal

Balb/c EPI (1 day) 23

Lipo-EPI 6 mg/kg — — — — 97
Lipo-EPI 12 m/kg — — — — 100

Shinozawa 198176 DOX 3 × 1.25 mg/kg Ehrlich ascites ICR DOX — 13
Liposomes + DOX — — — — 53
Liposomes – DOX — — — — 60
Neutralliposomes + DOX — — — — 64

Singh 2020 3D167 DOX 5 mg/kg primary human 
ovarian ascites

nude DOX 10 26

Doxil 5 mg/kg — — — — 80
Singh 2020 2D167 DOX 5 mg/kg — — DOX 25 41

Doxil 5 mg/kg — — — 27
Unezaki 1995377 DXR 5 mg C26 murine 

colorectal
Balb/c DOX — 46

DXR-LP 5 mg — — — — 39
DXR-LCL 5 mg — — — — 69
DXR 10 mg — — — — 55
DXR-LP 10 mg — — — — 54
DXR-LCL 10 mg — — — — 88
DXR 5 mg — — — — 44
DXR-LP 5 mg — — — — 42
DXR-LCL 5 mg — — DOX — 68
DXR 10 mg — — — — 62
DXR-LP 10 mg — — — — 65
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TABLE 12: (continued)
Study Group Tumor Mouse Drug TV at start 

(mm3)
TIR

DXR-LCL 10 mg — — — — 91
Vaage 1993a378 DOX 3 × 6 mg/kg HEY human 

ovarian
nude DOX 45 6

DOX 3 × 9 mg/kg — — — — 23
Doxil 3 × 6 mg/kg — — — — 64
Doxil 3 × 9 mg/kg — — — — 50

Vaage 1993b379 Oncovin 3 × 1.0 mg MC2 murine 
mammary

C3H/He VCR 40 39

Oncovin 3 × 1.3 mg — — — 30 42
S-VCR 3 × 1 mg — — — 58 56
S-VCR 3 × 1.3 mg — — — 20 86
S-VCR 3 × 0.5 mg — — — 89 18
S-VCR 3 × 0.7 mg — — — 27 75
S-VCR 3 × 1.0 mg — — — 10 81
DOX 3 × 6 mg — — DOX 52 14
Doxil 3 × 1 mg — — — 83 36
Doxil 3 × 3 mg — — — 52 60
Doxil 3 × 6 mg/kg — — — 10 94

Vaage 1994a380 DOX 4 × 6 mg/kg PC3 human 
prostate

nude DOX 2 58

DOX 4 × 9 mg/kg — — — — 67
Doxil 4 × 6 mg/kg — — — — 82
Doxil 4 × 9 mg/kg — — — — 82
DOX 4 × 9 mg/kg — — — — 57
Doxil 4 × 9 mg/kg — — — — 69

Abraxane
Desai 2008 82 Abraxane 15 mg/kg MX-1 nude PTX — 80

Docetaxel 15 mg/kg — — — — 29
Abraxane 50 mg/kg LX-1 human 

hepatic
— — — 84
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TABLE 12: (continued)
Abraxane 120 mg/kg — — — — 98
Docetaxel 15 mg/kg — — — — 61
Nab-paclitaxel (120 mg/kg) MDA-MB-231 

human breast
— — — 99

Nab-paclitaxel (180 mg/kg) — — — 98
Docetaxel 15 mg/kg — — — 78
Abraxane 50 mg/kg MDA-MB-231/ 

HER2 + 
— — — 94

Abraxane 120 mg/kg — — — 99
Docetaxel 15 mg/kg — — — 96
Abraxane 50 mg/kg PC3 human 

prostate
— — — 94

Abraxane 120 mg/kg — — — 99
Docetaxel 15 mg/kg — — — 97
Abraxane 50 mg/kg HT29 human 

colorectal
— — — 50

Abraxane 120 mg/kg — — — 65
Docetaxel 15 mg/kg — — — 36

Desai 200681 Cremophor-Taxol H522 lung — PTX 155 —
Abraxane — — — 100
Abraxane MX-1 breast — — 100 100
Cremophor-Taxol SKOV-3 ovarian — — 165 —
Abraxane — — — 75
Cremophor-Taxol PC3 human 

prostate
— — 165 —

Abraxane — — — 99
Cremophor-Taxol HT29 colon — — 180 —
Abraxane — — — 50

Huang 2019184 Abraxane 5 × 20 mg/kg BCap37 human 
breast

— PTX 51 52

Note that earlier studies were reported only in abstract form and thus not included in this analysis.
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of the studies, chemotherapy was combined with 
photo-dynamic therapy (PDT), photo-thermal ther-
apy (PTT), or magnetically induced thermal therapy 
(MTT). Three studies with PDT and three studies 
with TT but without another drug are included. 
Some papers present multiple formulations so, 
where practical, data/results will be presented for 
each of the different formulations. Studies in which 
the drug was injected directly into the tumors are not 
included in this analysis. 

A detailed analysis is provided for the formula-
tions with DOX alone (50 studies), DOX combined 
with thermal therapy (22 studies), DOX combined 
with photodynamic therapy (7 studies), or DOX 
combined with radiation therapy (one study). Figure 
2 presents the size, zeta potential and loading ca-
pacities of the various formulations included in the 
analysis and Fig. 3 the percent TIR and Fig. 4 a plot 
of mean and 95% confidence interval for compari-
sons by ANOVA. All groups are different from both 
free-DOX and MSN-DOX by ANOVA followed by 
a Dunnett post hoc test (p < 0.01 in all comparisons). 

Drug release is a critical feature of a drug car-
rier. If the drug is released too quickly in the plasma 
space, the advantage of employing the carrier is 
largely lost. If the drug releases too slowly, or incom-
pletely, the cancer treatment efficacy is not optimal. 
High “burst” release has been a particular prob-
lem for Nanomedicine drug carriers. As described 

previously, a negatively charged carrier (like MSNs) 
carrying a positively charged drug (like DOX-HCl) 
will generally not undergo “burst” release but will 
hold onto a high percentage of the cargo (drug) until 
it reaches an environment with a “low” pH. Drug 

FIG. 2: Comparisons of loading capacity (LC), size by 
SEM/TEM and DLS and zeta potential for the formula-
tions that include DOX without other drugs

FIG. 3: Comparisons of TIR for the formulations that 
include DOX. F-DOX (free DOX; n = 89); NP-DOX 
(MSNs containing DOX without targeting (T), photo-
dynamic therapy (PDT) or thermal therapy (TT); n = 
53). NP-DOX-T (targeted MSNs carrying DOX; 27); 
NP-DOX-T-TT/PDT/RT (targeted MSNs carrying DOX 
combined with TT, PDT or RT; n = 18); NP-DOX-NT-TT 
(non-targeted MSNs carrying DOX plus TT/PDT or RT; 
n = 26); Lipo-DOX (pegylated liposomal DOX; n = 22); 
Abraxane (nab-paclitaxel; n = 14).

FIG. 4: Mean and 95% confidence interval for TIR. The 
pooled standard deviation is used to calculate the inter-
vals. All groups are different from both free-DOX and 
MSN-DOX by ANOVA followed by a Dunnett post hoc 
test (p < 0.01 in all comparisons). Groups names are pro-
vided in Fig. 3.
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release data were extracted from the published plots 
and the measured or predicted release of various for-
mulations at various conditions at 48 h was plotted 
(Fig. 5). For experiments that were not carried out to 
at least 48 h, the data were fit to a model to predict 
the 48 h cumulative release. The cumulative release 
of DOX from MSNs suspended in buffer (typically 
PBS) at ~ pH 7.4 and with exposure to ~ pH 5.5 (be-
tween 5 to 6), following molecular stimulation (e.g., 
GSH, enzyme, ROS) at either ~ pH 7.4 or ~ pH 5.5 
and/or following exposure to an external stimulus 
(NIR, RF, AMF) is presented. However, the specific 
conditions varied considerably. Generally, the exter-
nal stimulus increased the temperature of the buffer 
solution to ~ 42°C or greater.

Drug release from nanoparticles is generally 
measured either by (1) incubating the drug loaded 
nanoparticles and periodically spinning down a 
sample and measuring the amount of the drug in the 
supernatant or (2) by using a dialysis membrane and 
monitoring the amount of drug that has leaked from 
the nanoparticles and crossed the dialysis membrane 
into a reservoir of dialysate. Yu et al.145 compared the 
release of DOX from Doxil using regenerated cel-
lulose (RC) and biotech-grade cellulose ester (CE) 
dialysis membranes of various molecular weight 
cutoff (MWCO). For RC type dialysis membranes 
a MWCO of 8–10 kDa appeared sufficient, but for 
CE type membranes the MWCO of at least 50 kDa 

should be used to minimize the error due to the de-
lay in released drug crossing from the donor com-
partment to the receiver compartment. Including a 
free-DOX group should be used to correct the errors 
in release measurements using dialysis membrane 
tubing. However, the experiment in145 was done at 
45°C to accelerate release and therefore the actual 
rate reported cannot be compared with that from 
MSNs. Russell et al.142 on the other hand, reported 
slow DOX release (leakage) from Doxil, 20–30% 
at 12 d at 37°C. About 50% of the studies included 
in this paper measured drug release using the dial-
ysis method, but several did not state the MWCO 
and none clearly identified the membrane type. Only 
one study included a curve for free-DOX. It is likely 
that for many of the studies, the true release kinet-
ics is faster than what was reported. However, for 
the purpose of the analysis of this paper, the error is 
not likely of practical significance. Nevertheless, the 
release of DOX from MSNs at normal pH with no 
other stimulation is typically slow. Even at low pH, 
or following a molecular or external stimulus, the 
cumulative release reaches 100% by 48 h in only a 
few cases. 

IV. DISCUSSION

This paper provides a review and analysis of the 
application of mesoporous nanoparticles for drug 
delivery for cancer and compares against pre-clin-
ical, in vivo studies of PEGylated liposomal DOX 
(e.g., Doxil) and human albumin-bound paclitaxel 
(nab-paclitaxel, Abraxane, ABI-007). Only in vivo 
studies that reported drug release from the MSNs 
and tumor volume response to treatment were in-
cluded. Several of the MSN formulations had a 
core-shell structure, several had coatings or chem-
ical constructs to cap the pores to restrict/control 
drug release, and some formulations had hollow 
cores to improve drug loading capacity (Table 7). 
Studies varied considerably in the drug dose, the 
dosing schedule, tumor model and the size of the 
tumor at the start of the treatment. A total of 166 
published studies were reviewed for this paper. The 
majority of the formulations used CTAB (122) or 
CTAC (27) as the template, and seven used the stan-
dard Stöber technique without a template. While not 

FIG. 5: DOX release from MSNs under various condi-
tions. Stimulation (stim) includes cytosolic or intracellular 
molecular stimulation, or stimulation by an external energy 
source. Rmax: maximal release. R48: release at 48 h.
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strictly mesoporous based on the synthesis method, 
the authors using the Stöber technique referred to 
their particles as such, with the exception of one20 
(but that study was included in this analysis because 
three different sizes of particles were directly com-
pared). The MSNs were commercially obtained for 
two of the studies. Other templates besides CTAB 
or CTAC were also used (Table 7). Some studies 
did not report the template used. One formulation 
included a porous silica shell over a liposome, but 
did not use a traditional template. The data analyzed 
statistically and graphically (in the figures) are from 
the 80 studies that used DOX but without other che-
motherapy drugs (other than drugs to induce TT or 
PDT). 

For these 80 studies, regression analyses be-
tween LC and NP size, charge, hollow or solid core, 
shell, coating, presence or absence of PEG, or type 
of template used were all not correlated. There was 
also no correlation between TIR% and these vari-
ables. There was however a statistical difference in 
the electron microscope measured size based on sur-
factant (template). The use of CTAC (71 ± 26 nm) 
resulted in smaller particles than CTAB (120 ± 45) 
with p < 0.0001. Although it was expected that LC 
would be higher in hollow compared with solid core 
MSNs and that TIR would correlate to LC and MSN 
size, the pooled data from the studies did not sup-
port these hypotheses. This is not surprising given 
the variability among studies of tumor model, tumor 
size at the start of treatment, dose, dose schedule, 
length of the study, nanoparticle formulation (phys-
ical and chemical characteristics) etc. Nevertheless, 
in terms of tumor inhibition, there is a clear benefit 
to targeting and combining with TT or PDT (Figs. 
3 and 4).

A recent article evaluated the effect of the sur-
factant/template removal step on the polydisper-
sity of the particles, the BET surface area and pore 
size.146 The colloidal stability of MSNs was analyzed 
by dynamic light scattering (DLS) and differential 
centrifugal sedimentation (DCS) and particle aggre-
gation subjectively evaluated by SEM. The methods 
compared were calcination, solvent extraction and 
dialysis. The pore size was largest using solvent 
extraction (EtOH:NH4NO3). However, the dialysis 
method (with EtOH:AcOOH dialysate) was better 

for preserving particle size and reducing particle ag-
gregation. However, the dialysis method described 
requires a considerable amount of relatively ex-
pensive dialysate and is relatively time-consuming. 
Calcination appears to be best at removing organics 
from the final product, but also results in the high-
est amount of aggregation and decreases the pore 
size. The analysis from the studies included in this 
paper is inconclusive in terms of the effects of the 
surfactant/template removal process on particle size 
or other characteristics. The BET surface area, pore 
volume and pore size were reported in many of the 
studies but reported inconsistently. 

Li et al.147 compared the TIR of MSNs carry-
ing DOX with different pore sizes and drug LC. The 
MSN size was ~ 130 nm, charge ~ –36 mV, pore 
sizes were 2.3, 5.4, and 8.2 nm, pore volumes were 
0.492, 1.229, and 1.697 cm3/g, and the LC values 
were 8.2, 21.1, and 21.1 wt% respectively. The TIR 
calculated were 85%, 97%, and 93%, respectively, 
suggesting a likely correlation between TIR and LC. 
Tang et al.20 evaluated camptothecin-silica nano-
conjugates of 25, 53, and 199 nm sizes (by TEM, 
44, 65, and 238 nm, respectively, by DLS). LC was 
16.6 wt% and charge was near neutral for all three 
sizes. TIR was 43%, 74%, and 34% for the small, 
medium and large nanoparticles respectively. Fi-
nally, Ma et al.148 compared 20, 40, and 80 nm size 
MSNs (by TEM, 24, 44, and 106 nm, respectively, 
by DLS) loaded with PDT anticancer ruthenium 
complex (RuPOP) and conjugated with folate acid 
(FA). The MSN charge ranged from 19 to 37 mV. 
TIR was 46%, 43%, and 38% for the small, medium 
and large nanoparticles, respectively. These studies 
suggest that TIR may be correlated with LC and car-
rier size, but that other factors related to the MSN 
formulation and animal model and drug dosing are 
also important and therefore controlled experiments 
must be designed to adequately test such hypotheses.

Some of the studies reviewed deserve a closer 
look. Liu et al.149 described an elegant method of 
“manufacturing” a 20 L batch irinotecan loaded 
“silicasome.” The paper provided a detailed toxic-
ity analysis and physiochemical characterization. 
Their study should serve as a model for the level 
of detail needed in order to establish feasibility 
supporting a clinical trial. However, the increased 
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life survival (ILS) for the model (colorectal tu-
mor “chunk” surgically implanted into the cecum) 
was only ~ 39%. The TIR (58%) result was not as 
impressive as many of the other formulations re-
viewed. In Tables 8–11, the TIR that reached at 
least 99% are highlighted. From Fig. 3, we observe 
that the TIR of MSN-DOX formulations that incor-
porate TT compare favorably to PEGylated liposo-
mal DOX. However, except when in combination 
with TT, in none of the MSN-DOX studies (with or 
without targeting) did the TIR reach 100%. Most 
of the TT studies required exposure of the tumor 
to NIR light for at least several minutes. This may 
not be very practical in a human clinical setting, ex-
cept perhaps as part of a surgical procedure. Lu150 
delivered CPT with folic acid (FA) targeting that 
reached 100% TIR. Interestingly, the non-targeted 
formulation performed almost as well (99% TIR). 
Of course, even 100% TIR does not necessarily 
mean that the cancer has been eradicated, just that 
it was not palpable. Only long-term survival studies 
can prove “cure.”

Drummond et al.11 published a comprehensive 
review of pre-clinical and clinical studies of lipo-
somal-based chemotherapeutics, appearing 4 years 
after Doxil was approved by the FDA. It provides 
an excellent comparison of various liposome for-
mulations, PD-PK, drug accumulation, and survival 
rates. The percent ILS was reported for 16 pre-clin-
ical studies, with different tumor models, differ-
ent drug doses, and different treatment schedules. 
Considering Doxil specifically (5 experiments), the 
ILS ranged from 40% to 116%. Considering PE-
Gylated DOX loaded liposomes more broadly (two 
experiments with PEG-DSPE/DSPC/Chol), the 
ILS was 144% in one and 168% in another. This 
demonstrated the wide variability expected in stud-
ies with different experimental designs, even for an 
approved (or soon to be approved) nanoparticle an-
ti-cancer formulation. Of the MSN studies reviewed 
in this paper 18 performed survival studies (Table 
13), with ILS of the MSN group ranging from a low 
15% to a high of 133%, with one study reporting 
100% animals surviving > 50 d and another with 
100% surviving  > 60 d. However, the length of 
survival studies reported for liposomal DOX was 
generally longer (60–120 d). 

In the years after the approval of Doxil, numer-
ous studies have been published evaluating tumor 
targeting or newer chemotherapy against PEGylated 
liposomal DOX formulations in tumor-bearing 
mice.151–170 The studies evaluated in this paper for the 
TIR of PEGylated liposomal DOX in tumor-bear-
ing mice were published mostly between 1990 and 
2002, but there was also a very interesting study 
published in 2020.167 In that recent study Singh 
et al.167 evaluated the response to Doxil of human 
ovarian tumors inoculated into mice as individual 
cells (2D model) and after growing spheroids (3D 
model) and reported that the 3D tumor response was 
very good and was enhanced even further by com-
bining with Avastin. The 2D tumor model response 
was lower. Also interesting, the response of the 2D 
model to free-DOX was better than the response of 
the 3D model to free DOX. A study by Brouckaert et 
al.155 evaluated Doxil in B16BL6 murine melanoma 
and found that Doxil did not perform well, but re-
sponse was enhanced by adding tumor necrosis fac-
tor-α (TNF). The animals received 1 × 4.5 mg/kg + 4 
× 1 mg/kg equivalent doxorubicin. These examples 
demonstrate the importance of the model on results 
as well as the potential for enhancing efficacy with 
companion therapies.

In the three years following the approval of Ab-
raxane, Desai et al.81,82 published studies in several 
different tumor-models in mice and found quite 
variable results. MDA-MB-231 (breast), (H522 
(lung) and MX-1 (breast) responded very well, 
SKOV-3 (ovarian) and PC-3 (prostate) responded 
well, but the tumors continued to grow in volume 
after the end of treatment, while the response of 
HT29 (colon) tumors was not much better than Cre-
mophor-based paclitaxel. Karmali et al.171 found vir-
tually no inhibition of MDA-MB-435 tumor (cells 
originally identified as breast, but now known to be 
melanoma). Desai et al.,82 Shao et al.,172 and Yang et 
al.173 investigated tumor response to Abraxane with 
respect to expression of SPARC (secreted protein 
acidic and rich in cysteine) and HER-2 (human ep-
ithelial growth receptor). Desai found that efficacy 
of Abraxane was higher in HER-2-negative tumors 
and in HER-2 positive tumors with high expression 
of SPARC. Yang observed very good tumor inhibi-
tion (98.8%) of Abraxane in an osteosarcoma model 
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TABLE 13: Percent increased life survival (ILS) of MSN groups
Author Group Targeting Tumor Mouse Drug Dose TV at start ILS %

Jin 2018287 MSN-Fe-AuNP N/A WHU-HN6- human 
squamous

nude DOX 10 100 25

DOX — — — — — — 38
MSN-Fe-AuNP-
DOX

— — — — — — 63

MSN-Fe-AuNP 
+ NIR

— — — — — — 80% > 
28 d

MSN-Fe-AuNP-
DOX + NIR

— — — — — — 100% > 
28 d

Kang 2019253 DOX HA/CD44 4T1 mouse 
epithelial breast

NR DOX 5 mg/kg 86 –32

oHA-DOX@
MSN/HAP

— — — — — — 100% > 
60 d

Liu 2016260 DOX N/A HepG2 human liver nude DOX 9 × 3 mg/kg 100 0
HMSNs@DOX — — — — — — 24
HMSNs-b-CD/
Ada-PEG@DOX

— — — — — — 48% > 
60 d

Liu 2019b257 DOX HA/CD44 A549- human 
alveolar carcinoma

nude DOX 8 × 5 mg/kg 100 57

HA-JMSN/
DOX-DMMA

— — — — — — 70% > 
40 d

Ramaya 
2017263

DOX FA EAC murine Ehrlich 
ascites carcinoma

Balb/c DOX 14 × 1  
mg/kg

145 70

Lipodox — — — — — — 80
Au@
SiO2-DOX-CS-FA

— — — — — — 125

Zhoa 2018277 DOX N/A MCF-7/MDR 
human breast

SCID DOX 5 mg/kg 100 NR

DOX@
MSN-TPGS

— — — — — — 15

Zhou 2018279 DOX Tf MDA-MB-231 
human breast

nude DOX 7 × 1 mg/kg 110 13
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TABLE 13: (continued)
HMSN-S-S-Tf@
DOX

— — — — — — 65% > 60 d

Zhu 2017280 DOX VEGF SH-Sy5Y nude DOX 7 × 5 mg/kg 150 32% > 11 d
SiO2@LDH-DOX — — — — — — 83% > 11 d
SiO2@
LDH-Bev-DOX

— — — — — — 100% > 
11 d

Wang 2019300 DOX Mag MCF-7/MDR 
human breast

nude DOX; Ce6 3 mg/kg 200 98

nanocomposite + — — — — — — 35% > 35 d
Wang 2018197 GNR/Ppy/m-SiO2 

+ Laser
N/A CT26 mouse colon Balb/c DOX 1 × 5 mg/kg 100 100% > 

30 d
GNR/
Ppy/m-SiO2-DOX

— — — — — — 73

GNR/Ppy/m-
SiO2-DOX + 
Laser

— — — — — — 100% > 
30 d

Zhong 
20200294

GNR@HPMO@
PVMSN–DOX

N/A H22 nude DOX 1 × 5 mg/kg 200 16

GNR@HPMO@
PVMSN–DOX + 
NIR

— — — — — — 100% > 
50 d

Ansari 2018318 EPI Mag C-26 murine 
colorectal

nude EPI 9 mg/kg 20 NR

MSMN + 
EPI(MAG + )

— — — — — — 35% > 
35 d

Fei 2017326 ATO-sol RGD H22 murine hepatic ICR ATO 15 × 1  
mg/kg

50 10

RGD-LP-
CHMSN-ATO

— — — — — — 65

Liu 2019149 IRIN N/A MC38 murine 
colorectal 

(orthotopic)

C57BL/6 IRIN 4 × 40  
mg/kg

NR 11

Onivydne — — — — — — 7
IR-silicaosome — — — — — — 39
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TABLE 13: (continued)
Author Group Targeting Tumor Mouse Drug Dose TV at start ILS %

Liu 2018367 ICG N/A MCF-7 nude ICG 9 × 1.2  
mg/kg

100 8

AuNR@
MSN-ICG

— — — — — — 27

AuNR@
MSN-RLA/
CS(DMA)-PEG

— — — — — — 31

AuNR@MSN-
ICG-RLA/
CS(DMA)-PEG

— — — — — — 50% > 
60 d

Tao 2019349 ATO-sol angiopep-2 
peptide

C6 rat glioma (intra 
cranial)

Rat ATO 8 × 1 mg/kg NR 29

ANG-LP-PAA-
MSN@ATO

— — — — — — 133

Wu 2020351 HMSNs (H) N/A PC-3 nude ICG; 
paclitaxel

1 × (5; 4) 
mg/kg

100 0

HMSNs-PAA 
(HP)

— — — — — — 10

CaO2 (C) — — — — — — 10
CaO2@HMSNs-
PAA (CHP)

— — — — — — 60% > 
14 d

Yang 2019365 MSNR@Au-
TPPS4(Gd) + 
660nm

N/A 4T1 Balb/c TPPS4 (PTT 
sensitizer)

15 mg/kg 100 20% > 
40 d

MSNR@Au-
TPPS4(Gd) + 
808nm

— — — — — — 39% > 
40 d

MSNR@Au-
TPPS4(Gd) + 
808/660nm

— — — — — — 80% > 
40 d

ILS = 100*(treated mean survival)/(control mean survival) – 100. Mean survival time is determined from a Kaplan-Meier plot as (number of days of the first death + 
number of days of the last death)/2.
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with high SPARC expression. Conversely, Shao172 
found no increased response to Abraxane in SPARC 
positive NSCLC. Beyer et al.174 demonstrated that 
the epithelial junction opener JO-1 improved the 
efficacy and safety of Doxil, Abraxane, and other 
chemotherapy drugs. In subsequent years, various 
non-albumin-bound formulations of nanoparti-
cle-PTX were investigated in tumor-bearing mice 
to demonstrate improved outcomes compared with 
Abraxane.175–188 Again, these studies suggest that the 
selection of the tumor model is critical and adding 
companion therapies might improve clinical out-
comes in some carefully selected patients.

The synthesis of drug-loaded MSNs is very 
different from that of liposomes and protein-bound 
drugs. However, the size and loading capacities of 
the MSN formulations are similar to those of li-
posomal and protein-bound drugs. Liposomes are 
formed by the hydration of a thin lipid film, and the 
loading capacity of remote loaded liposomal doxo-
rubicin is as high as 0.25 mg drug/mg lipid, or 25 
wt%, and the size is about 100 nm in diameter.11 The 
composition of the lipid was highly optimized, as 
reviewed by.11 Liposomes can be synthesized within 
a narrow size distribution, which is controlled by 
extrusion through nano-porous membranes. High 
drug loading (up to 98% efficiency) is driven by a 
high liposome transmembrane ammonium salt (pH) 
gradient.141 Abraxane, on the other hand, contains 10 
wt% paclitaxel and a diameter between 130 and 150 
nm189,190 (see also the Abraxane package insert). It 
is prepared by high-pressure homogenization of pa-
clitaxel with human serum albumin. The improved 
efficacy of Abraxane is likely not due to tumor EPR 
since it is reported that “upon dilution, nab-pacli-
taxel nanoparticles quickly dissociated into soluble 
albumin-paclitaxel complexes with size similar to 
native albumin.”191

There was wide variability in the size and load-
ing capacities of the MSN formulations reviewed 
(Fig. 2). The loading capacity of MSN-DOX-only 
formulations analyzed in this paper ranged from a 
low of only 1 wt%192 to a high of 77 wt%193 with a 
mean of 25 wt% and median of 20 wt%. A hollow 
core did not correlate to LC; range of 10 wt% to 50 
wt%, mean 30% and median 35%. The high 77 wt% 
LC formulation was 150 nm (by electron microscopy, 

DLS size not provided) had a MSN core capped with 
black phosphorous quantum dots for PTT with ex-
posure to near infrared laser, was targeted against 
folic acid (FA) and resulted in 94% TIR against H22 
murine hepatic tumors. The DOX release at pH 7.4 
was about 35% at 32 h, about 50% at pH 5 without 
exposure to the laser and over 70% at pH 5 and ex-
posure to laser. The DLS (hydrodynamic) size of the 
MSN-DOX-only formulations ranged from 48 nm194 
to 302 nm,195 with a mean of 159 nm and a median 
of 150 nm (not including one outlier of 750 nm and 
two of 600 nm). Nineteen of the MSN-DOX-only 
formulations were larger than 200 nm (by DLS). 
One of the 600 nm MSN formulation196 was unusual 
in that it had a 14 nm Fe3O4 core, but the TEM size 
of the core-shell MSNs was reported to be only 114 
nm. Although the hydrodynamic size of the MSN 
is always larger than the size by SEM/TEM, and 
correlates well, this difference (600–114 nm) is an 
outlier. These MSNs are peptide and targeted using 
an external magnet resulting in a TIR of 84%. They 
were designed to be enzyme (MMP-2) responsive 
and the DOX is predicted to reach 100% cumulative 
release in the presence of enzyme. The other 600 nm 
MSN formulation consisted of a 9 × 145 nm gold 
nanorod core to induce PTT upon exposure to near 
infrared laser.197 The loading capacity was 69% and 
the TIR was 99% against C26 mouse colon tumor. 
The rod shape likely overestimates the DLS size. A 
third apparent outlier was a 750 nm MSN.198 These 
MSNs consist of a Fe3O4 core that served as a tem-
plate for growing a MSN shell with very large pores 
containing ultra-small Fe3O4 nanoparticles. The large 
pores also provide for a high LC (46 wt%). They are 
FA targeted and AMF stimulated for MTT and drug 
release. The TIR was 88% in MCF-7 tumors. The cu-
mulative DOX release at 48 h was not much different 
between the sample at pH 7.4 not exposed to AMF 
(44%) compared with the sample exposed to AMF 
(48%). DOX release was not measured at low pH. 
The zeta potential of the MSN formulations in this 
paper ranged from –51.0 mV199 to +46.7 mV200 with 
mean –8.9 mV and median –12.8 mV. The MSN size 
and charge did not correlate to TIR%, suggesting that 
other characteristics have a greater effect. 

The mean drug loading and size of the MSNs 
compare favorably to Doxil and Abraxane. The 
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highest level of TIR for the DOX-only, non-tar-
geted MSN formulation (without TT or PDT) was 
97% (against H22 murine hepatic tumor).147 These 
MSNs had negative ZP (–35 mV) and 134 nm size 
(by DLS) and DOX release was about 78% at 24 h 
at pH 7.4. Even with targeting, only four DOX-only 
formulations without TT or PDT achieved greater 
than 95% TIR.201–204 The MSNs reported by Gao et 
al.201 demonstrated TIR of 96% (against H22 tumor). 
These near neutral MSNs were 131 nm (by DLS) 
with LC of 15 wt% and targeted to FA. These parti-
cles were interesting in that they possess a solid SiO2 
core and porous SiO2 shell coating. DOX release 
reached only 27% after 48 h at pH 5. The MSNs by 
Turan et al.202 reached 99% TIR (against GL261 tu-
mors). These were 74 nm (by TEM) targeted to both 
RGD and CREKA (on separate MSNs) with Fe3O4 
cores. DOX release was stimulated by RF (without 
increasing temperature). The LC was 20 wt%. The 
drug release without RF stimulation was low (4%) 
but with 30 min of RF stimulation the cumulative 
DOX release reached 66% and reached 90% with 
2 h of stimulation. The in vivo therapy study con-
sisted of 60 min exposure to the RF following MSN 
administration. This formulation may be more prac-
tical than exposure to NIR light since RF exposure 
might be applied systemically. But achieving uni-
form and desired RF in a large body region will also 
be a challenge. Six of the MSN-DOX-only formula-
tions with TT achieved 99 or 100% TIR.197,205–209 Al-
though promising, requiring exposure to NIR light 
may be difficult to implement clinically and limited 
to localized disease.

Of the formulations combining DOX with an-
other drug, six reached at least 95% TIR.64,210–214 
Three are of particular interest because they do not 
depend on external stimulation. A formulation com-
bining DOX and MPH in a core shell structure of 
an MSN surrounded by a cancer cell membrane and 
lipid achieved 95% TIR (MCF-7 tumor).212 How-
ever, this formulation seems to be quite compli-
cated with formidable regulatory and manufacturing 
hurdles before becoming a commercially marketed 
product. Another formulation215 reached 97% TIR 
(in H22 tumors). These dendritic MSNs combined 
DOX and survivin shRNA-expressing plasmid. The 
third combined DOX with Bcl-2 siRNA (97% TIR in 

MCF-7 tumor).214 Of the MSN non-DOX formula-
tions, eight reached TIR of at least 95%.150,216–222 Six 
depend on an external stimulus and five are targeted. 
So, the best performing MSN formulations compare 
favorably to Doxil and Abraxane in tumor-bearing 
mice, but is that enough to warrant further develop-
ment of these particular formulations, or are there 
other considerations and thus further improvements 
that must be made?

Long circulating liposomal doxorubicin and 
nab-paclitaxel were initially proposed to modify 
the PK-PD and reduce toxicities, cardiac toxicity in 
the case of liposomal doxorubicin and toxicities as-
sociated with the Cremophor solvent in the case of 
nab-paclitaxel, but pre-clinical data showed impres-
sive improvements in survival over free doxorubicin 
and Cremophor-based paclitaxel, respectively. He 
et al. recently provided a review of nanomedicine 
clinical trials.223 The authors state that there have 
been “marginal prolongations in the clinic.” Doxil 
(and equivalent) in breast cancer patients found no 
improvements in progression-free survival, overall 
survival or overall response rate. Outcomes were 
more promising for ovarian cancer and myeloma. 
Abraxane showed statistically significant prolonga-
tions for breast cancer, pancreatic adenocarcinoma 
and non-small-cell lung cancer patients. Again, se-
lection of patient populations is important since the 
therapies may be effective only in particular cancer 
types, with (as yet) unknown specific characteris-
tics. However, certainly the hoped-for cure has not 
been realized as prolongation was on the order of 
days or weeks.

Petersen et al.165 provided a meta-analysis of 
pre-clinical and clinical (randomized) studies com-
paring liposomal to conventional non-liposomal 
doxorubicin and found that “efficacy in patients 
was not different between liposomal and con-
ventional chemotherapy as assessed by objective 
response.” Their analysis also found that “in con-
trast with clinical results, animal studies showed 
significantly increased survival in mice.” Conclu-
sions from the paper: “…discuss the possible rea-
sons why the pharmacological advantages of carrier 
mediated chemotherapy did not translate into en-
hanced clinical efficacy including the role of the en-
hanced permeability and retention (EPR) effect and 
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the tumor microenvironment, the optimal dosing 
regimen for carrier mediated agents, and the lack 
of standardization in the conduct and reporting of 
preclinical studies evaluating anticancer efficacy of 
these agents. Our study shows that the full clinical 
potential of carrier-mediated drugs remains to be 
realized and highlights some of the critical knowl-
edge gaps that must be addressed in order to move 
the field forward.” Other critical knowledge gaps 
include a thorough understanding of how the rate of 
drug release and the precise location of the drug re-
lease (intracellular or interstitial) affects tumor re-
sponse, and what is optimal. There is considerable 
evidence that drug pegylation interferes with cel-
lular internalization. It is also not fully understood 
if subsequent doses of pegylated drugs leads to in-
creased clearance, the so-called “PEG dilemma.” 
Clearly there are substantial differences between 
human disease and animal models. Compared with 
human disease, most animal models use immune 
compromised mice, with well-defined and homog-
enous localized disease and large tumor burden. 
Study time-spans are shorter and cancer recurrence 
is typically not studied. But, even in the pre-clini-
cal studies, out of 11 studies analyzed, only 4 had 
p < 0.05 comparing overall survival, though when 
combined there was an overall p < 0.0001. A more 
recent meta-analysis of clinical studies compares 
liposomal to conventional cisplatin in patients with 
non-small-cell lung cancer.224 As already well es-
tablished, the liposomal form reduced toxicities, 
but there was “no significant difference in partial 
response or stable disease.” So, is there evidence to 
suggest that other nanoparticle formulations will do 
better? Do the data demonstrate a high potential for 
MSN formulations to provide outcomes better than 
Doxil, Abraxane and other already approved nano-
medicines? Several of the formulations reviewed in 
this paper showed excellent response, particularly 
those that included “active” targeting and combi-
nation therapy, multiple anti-cancer drugs, pho-
todynamic therapy (PDT) and/or thermal therapy 
(TT). However, much more research is needed to 
bring any of these formulations into human trials, 
particularly manufacturing at scale and the de-
velopment of technologies for applying PDT and 
TT to metastases. Nevertheless, if the following 

recommendations are followed by the research 
community perhaps the questions can be answered 
in the affirmative.

A. Recommendations

The following is a list of recommended nanomed-
icine characteristics that should be reported in all 
studies:

•	 Size (SEM/TEM and hydrodynamic). If size 
measured by SEM/TEM provide details of 
how many particles were measured.

•	 Size distribution (PDI or SD)
•	 Charge (in H2O, PBS and in the presence of 

plasma proteins)
•	 Shape (SEM/TEM)
•	 Stability
•	 Drug-loading capacity (%wt/wt)
•	 Mechanisms of drug loading (bound, encap-

sulated, adsorbed, etc.)
•	 Drug release kinetics (in H2O, PBS, serum or 

plasma proteins at physiological temperature 
and pH)

•	 When dialysis is used for release kinetics: 
type and MWCO of dialysis membrane

•	 Short-term and long-term release kinetics (to 
be able to extrapolate to > 90% release)

•	 Initial and late drug release rates
•	 Change in size, size distribution and charge 

in plasma
•	 Detailed description of synthesis
•	 Cell toxicity IC50 for nano-formulations com-

pared with free drug.
•	 Surface area, pore size and pore volume (for 

porous structured systems)
•	 Storage conditions and changes in chemical 

and physical characteristics after storage, in 
particular after drying and resuspending

•	 Yield

The following is a list of recommended nano-
medicine characteristics that should be reported in 
in vivo studies:

•	 Tumor type, source and if implanted as cells 
or tumor tissue

•	 Strain and weight (or age) of animal
•	 Location of implant
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•	 Dose (in mg/kg of active drug), administra-
tion route, dose schedule

•	 Size (volume) of tumor at start of treatment
•	 Ex vivo tumor weight at end of study
•	 Tumor inhibition ratio (TIR)
•	 Comparison with free drug or comparable 

clinical drug treatment
•	 Rationale for selection of dose and dose 

schedule relative to that of clinical drug 
treatment

•	 Comparison group of commercially available 
drug carrier with the same or similar drug

•	 Survival studies should be > 120 d or until all 
animals have died or reached a health end-
point criteria

V. CONCLUSION

Impressive strides have been achieved in the devel-
opment of MSNs for cancer therapy and the data 
to date are very promising. Some formulations ap-
pear to compare favorably to FDA approved Doxil 
and Abraxane in pre-clinical studies. However, 
formalizing experimental design and data report-
ing among research groups and making the data 
available in a repository (such as127) for more de-
tailed analysis is needed in order to start making 
sense of the huge amount of data becoming avail-
able and to make the incremental improvements 
necessary for commercial and clinical success. 

Perhaps such an effort can ultimately provide suf-
ficient evidence for an entrepreneur to make the 
needed investment to bring some of these prom-
ising formulations to the clinic. If the requirement 
for consideration of an MSN formulation to be 
considered for further development is how it com-
pares to already approved formulations such as 
Doxil and Abraxane, it might be hard to justify the 
high cost that will inevitably be required to bring 
such products through testing and into the market. 
Potential advantages that MSNs have over lipo-
somes cited in the literature include: wider array 
of drugs that can be incorporated, greater drug re-
lease control, potentially greater stability in circu-
lation, prolonged drug release (which may or may 
not be beneficial), the inherent ability to release 
positively charged drugs in a low pH environment, 

or design thiol cleavage of the drug for release in 
the high glutathione tumor environment (which 
has not been proven to occur in vivo), potentially 
higher loading capacity (as demonstrated by some 
formulations) and perhaps greater flexibility for 
“active” targeting and delivering multiple drugs 
simultaneously. Studies should carefully con-
sider a dose and dose schedule that more closely 
resemble the human clinical setting and compare 
to existing approved formulations. Studies are 
needed that carefully examine how drug release 
rate affects outcomes and if a low pH, high glu-
tathione environment actually occurs in vivo and 
if so, how uniform and for what cancers. Studies 
need to be designed with models of metastatic dis-
ease and with realistic tumor volumes at the start 
of therapy. Survival studies need to be performed, 
and extended to 120 d. Attention must be given to 
design for manufacturing, sterilization, and min-
imal endotoxin levels, residue levels of surfac-
tant and other chemicals, etc. Such therapies are 
unlikely to be first-line therapy, so nanomedicine 
use in combination with first-line therapies should 
be studied. Only then can an informed decision 
be made as to the clinical (and thus commercial) 
potential of the newly proposed drug delivery  
formulation.

Considering the versatility of MSNs for drug 
delivery compared with liposomes it seems likely 
that one or more formulations will eventually make 
it into clinical trials. Despite somewhat limited (but 
real) efficacy advantages of liposomal doxorubicin 
over free drug, it has been a commercial success. 
The systemic toxicity of silica is low and therefore 
toxicity should not be a major limitation. Given the 
extensive infrastructure for porous silica nano and 
microparticle synthesis for industrial applications, 
the likelihood of overcoming the manufacturing 
barrier is promising. However, the better-per-
forming MSN formulations analyzed in this paper 
are rather complex and therefore the manufactur-
ing will be more complex than for MSNs used as 
sieves and other industrial applications. Neverthe-
less, I believe that the primary factors limiting the 
development of MSNs for cancer therapy are mar-
ket and regulatory uncertainties limiting capital 
investments.
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